

WTForms

WTForms is a flexible forms validation and rendering library for Python
web development. It can work with whatever web framework and template
engine you choose. It supports data validation, CSRF protection,
internationalization (I18N), and more. There are various community
libraries that provide closer integration with popular frameworks.

Help

	FAQ

	Solving Specific Problems

	Crash Course

API

	Forms
	The Form class

	Defining Forms

	Using Forms

	Low-Level API

	Fields
	Field definitions

	The Field base class

	Basic fields

	Convenience Fields

	Field Enclosures

	Custom Fields

	Additional Helper Classes

	Validators
	ValidationError

	StopValidation

	Built-in validators

	Custom validators

	Widgets
	Built-in widgets

	Widget-Building Utilities

	Custom widgets

	class Meta
	DefaultMeta

	CSRF Protection
	Using CSRF

	How WTForms CSRF works

	Creating your own CSRF implementation

	Session-based CSRF implementation

	Internationalization (i18n)
	Translating user-provided messages

	Translating built-in messages

Information

	Changes
	Version 3.1.2

	Version 3.1.1

	Version 3.1.0

	Version 3.0.1

	Version 3.0.0

	Version 3.0.0a1

	Version 2.3.3

	Version 2.3.2

	Version 2.3.1

	Version 2.3.0

	Version 2.2.1

	Version 2.2

	Version 2.1

	Version 2.0.2

	Version 2.0.1

	Version 2.0

	Version 1.0.5

	Version 1.0.4

	Version 1.0.3

	Version 1.0.2

	Version 1.0.1

	Version 1.0

	Version 0.6.3

	Version 0.6.2

	Version 0.6.1

	Version 0.6

	Version 0.5

	Version 0.4

	Version 0.3.1

	Version 0.3

	Version 0.2

	Version 0.1

	What’s New in WTForms 3
	New Features

	Past Major Releases

	BSD-3-Clause License

	Contributing to WTForms
	How to Contribute

	Contribution Guidelines

	Note on API compatibility

FAQ

This contains the most commonly asked questions about WTForms. The most current
version of this document can always be found on the WTForms Website [https://wtforms.readthedocs.io/].

Does WTForms work with [library here]?

The answer is most likely yes. WTForms tries to provide as usable an API as
possible. We’ve listed here some of the known libraries to work with WTForms,
but if it’s not listed, it doesn’t mean it won’t work.

	Request/Form Input

	Django

	Webob (Includes Pylons, Google App Engine, Turbogears)

	Werkzeug (Includes Flask, Tipfy)

	any other cgi.FieldStorage-type multidict

	Templating Engines

	Jinja

	Mako

	Django Templates (To get the full power of WTForms in your templates, use
WTForms-Django [https://github.com/wtforms/wtforms-django].)

	Genshi

	Database Objects

	Pretty much any ORM or object-DB should work, as long as data objects allow
attribute access to their members.

Special support is there for SQLAlchemy [https://github.com/wtforms/wtforms-sqlalchemy], Google App Engine [https://github.com/wtforms/wtforms-appengine], and Django [https://github.com/wtforms/wtforms-django]
collections via companion packages.

Does WTForms support unicode?

Simple answer: Yes.

Longer answer: WTForms uses unicode strings throughout the source code, and
assumes that form input has already been coerced to unicode by your framework
(Most frameworks already do this.) WTForms fields render to unicode strings by
default, and therefore as long as your templating engine can work with that,
you should have no unicode issues.

What versions of Python are supported?

WTForms supports Python 3.8+

How can I contribute to WTForms?

WTForms is not that scary. Really. We try to keep it as succinct and readable as
possible. For bugs and feature requests, you can file a
ticket on the project page [https://github.com/wtforms/wtforms].

How do I mark in a template when a field is required?

Some validators (notably Required and Optional) set flags on the fields’
flags object. To use this in a template, you can
do something like:

{% for field in form %}
 {{ field }}
 {% if field.flags.required %}*{% endif %}{{ field.label }}
{% endfor %}

Does WTForms handle file uploads?

Currently, it does not. This is because WTForms strives to be
framework-agnostic, and every web framework handles file uploads somewhat
differently. WTForms has a FileField which will let
you render a file input widget, but the rest is up to you. An example use in a
django-ish framework:

class MyForm(Form):
 image = FileField()

def my_view(request):
 form = MyForm(request.POST)
 file_wrapper = request.FILES[form.image.name]
 # Do things with your file wrapper now

Using form.image.name is an easy way to know what input name was generated
for your file input, even if the form is prefixed.

Why does blank input not go back to the default value?

A key design decision of WTForms was that form data -always- takes precedence
when there’s a form submission. That is, if a field exists on a form, and a
form was posted, but that field’s value was missing, it will not revert to a
default, but instead store an empty value (and in some cases cause a validation
error.)

This is for a number of reasons:

	Security. If a form reverted to defaults on missing data, then an evil user
could potentially cause problems by submitting a hand-coded form with key
missing fields.

	Bug-finding. If you omitted a field in your template, it might fall through
to the default and you’d possibly miss it.

	Consistency.

How do I… [convoluted combination of libraries]

You’ll probably want to check out our Solving Specific Problems doc.

Solving Specific Problems

What follows is a collection of recipes that will help you tackle specific
challenges that may crop up when using WTForms along with various other python
frameworks.

Prelude: Poke it with a Stick!

The aim of WTForms is not to do it all, but rather to stick to the basics,
while being compatible with as many frameworks as possible. We attempt to place
useful things in the API so that developers can get what they want out of it,
if the default behaviour is not desired.

For example, many fields in WTForms are iterable to allow you to access
enclosed fields inside them, providing you another way to customize their
rendering. Many attributes on the fields are readily available for you to use
in your templates. We encourage you to use the introspection abilities of the
python interpreter to find new ways to manipulate fields. When introspection
fails, you should try reading the source for insight into how things work and
how you can use things to your advantage.

If you come up with a solution that you feel is useful to others and wish to
share it, please let us know on GitHub by raising an issue or submitting a
pull request.

Removing Fields Per-instance

Sometimes, you create a form which has fields that aren’t useful in all
circumstances or to all users. While it is indeed possible with form
inheritance to define a form with exactly the fields you need, sometimes it is
necessary to just tweak an existing form. Luckily, forms can have fields removed
post-instantiation by using the del keyword:

class MagazineIssueForm(Form):
 title = StringField()
 year = IntegerField('Year')
 month = SelectField(choices=MONTHS)

def edit_issue():
 publication = get_something_from_db()
 form = MagazineIssueForm(...)

 if publication.frequency == 'annual':
 del form.month

 # render our form

Removing a field from a form will cause it to not be validated, and it will not
show up when iterating the form. It’s as if the field was never defined to
begin with. Note that you cannot add fields in this way, as all fields must
exist on the form when processing input data.

Dynamic Form Composition

This is a rare occurrence, but sometimes it’s necessary to create or modify a
form dynamically in your view. This is possible by creating internal
subclasses:

def my_view():
 class F(MyBaseForm):
 pass

 F.username = StringField('username')
 for name in iterate_some_model_dynamically():
 setattr(F, name, StringField(name.title()))

 form = F(request.POST, ...)
 # do view stuff

Rendering Errors

In your template, you will often find yourself faced with the repetitive task
of rendering errors for a form field. Here’s a Jinja [https://jinja.palletsprojects.com/] macro that may save you time:

{% macro with_errors(field) %}
 <div class="form_field">
 {% if field.errors %}
 {% set css_class = 'has_error ' + kwargs.pop('class', '') %}
 {{ field(class=css_class, **kwargs) }}
 <ul class="errors">{% for error in field.errors %}{{ error|e }}{% endfor %}
 {% else %}
 {{ field(**kwargs) }}
 {% endif %}
 </div>
{% endmacro %}

Usage: {{ with_errors(form.field, style='font-weight: bold') }}

Specialty Field Tricks

By using widget and field combinations, it is possible to create new
behaviours and entirely new ways of displaying a form input to the user.

A classic example is easily supported using the widget= keyword arg, such as
making a hidden field which stores and coerces integer data:

user_id = IntegerField(widget=HiddenInput())

Alternatively, you can create a field which does this by subclassing:

class HiddenInteger(IntegerField):
 widget = HiddenInput()

Some fields support even more sophisticated customization.For example, what if
a multiple-select was desired where instead of using a multi-row <select>,
a series of checkboxes was used? By using widgets, one can get that behavior
very easily:

class MultiCheckboxField(SelectMultipleField):
 """
 A multiple-select, except displays a list of checkboxes.

 Iterating the field will produce subfields, allowing custom rendering of
 the enclosed checkbox fields.
 """
 widget = widgets.ListWidget(prefix_label=False)
 option_widget = widgets.CheckboxInput()

By overriding option_widget, our new multiple-select when iterated will now
produce fields that render as checkboxes.

Crash Course

So you’ve cracked your knuckles and started working on that awesome python
webapp you want to write. You get through writing a few pages and finally you
need to tackle that loathsome task: form input handling and validation. Enter
WTForms.

But why do I need yet another framework? Well, some webapp frameworks take
the approach of associating database models with form handling. While this can
be handy for very basic create/update views, chances are not every form you
need can map directly to a database model. Or maybe you already use a generic
form handling framework but you want to customize the HTML generation of those
form fields, and define your own validation.

With WTForms, your form field HTML can be generated for you, but we let you
customize it in your templates. This allows you to maintain separation of code
and presentation, and keep those messy parameters out of your python code.
Because we strive for loose coupling, you should be able to do that in any
templating engine you like, as well.

Download / Installation

WTForms is available through PyPI [https://pypi.org/project/WTForms/]. Install it using pip:

pip install WTForms

Key Concepts

	Forms are the core container of WTForms. Forms
represent a collection of fields, which can be accessed on the form
dictionary-style or attribute style.

	Fields do most of the heavy lifting. Each field represents a data type
and the field handles coercing form input to that datatype. For example,
IntegerField and StringField represent two different data types. Fields
contain a number of useful properties, such as a label, description, and a
list of validation errors, in addition to the data the field contains.

	Every field has a Widget instance. The widget’s job
is rendering an HTML representation of that field. Widget instances can be
specified for each field but every field has one by default which makes
sense. Some fields are simply conveniences, for example
TextAreaField is simply a
StringField with the default widget being a
TextArea.

	In order to specify validation rules, fields contain a list of
Validators.

Getting Started

Let’s get right down to business and define our first form:

from wtforms import Form, BooleanField, StringField, validators

class RegistrationForm(Form):
 username = StringField('Username', [validators.Length(min=4, max=25)])
 email = StringField('Email Address', [validators.Length(min=6, max=35)])
 accept_rules = BooleanField('I accept the site rules', [validators.InputRequired()])

When you create a form, you define the fields in a way that is similar to the
way many ORM’s have you define their columns: By defining class variables which
are instantiations of the fields.

Because forms are regular Python classes, you can easily extend them as you
would expect:

class ProfileForm(Form):
 birthday = DateTimeField('Your Birthday', format='%m/%d/%y')
 signature = TextAreaField('Forum Signature')

class AdminProfileForm(ProfileForm):
 username = StringField('Username', [validators.Length(max=40)])
 level = IntegerField('User Level', [validators.NumberRange(min=0, max=10)])

Via subclassing, AdminProfileForm gains all the fields already defined in
ProfileForm. This allows you to easily share common subsets of fields between
forms, such as the example above, where we are adding admin-only fields to
ProfileForm.

Using Forms

Using a form is as simple as instantiating it. Consider the following
django-like view, using the RegistrationForm we defined earlier:

def register(request):
 form = RegistrationForm(request.POST)
 if request.method == 'POST' and form.validate():
 user = User()
 user.username = form.username.data
 user.email = form.email.data
 user.save()
 redirect('register')
 return render_response('register.html', form=form)

First, we instantiate the form, providing it with any data available in
request.POST. We then check if the request is made using POST, and if it is,
we validate the form, and check that the user accepted the rules. If successful,
we create a new User and assign the data from the validated form to it, and save
it.

Editing existing objects

Our earlier registration example showed how to accept input and validate it for
new entries, but what if we want to edit an existing object? Easy:

def edit_profile(request):
 user = request.current_user
 form = ProfileForm(request.POST, user)
 if request.method == 'POST' and form.validate():
 form.populate_obj(user)
 user.save()
 redirect('edit_profile')
 return render_response('edit_profile.html', form=form)

Here, we instantiate the form by providing both request.POST and the user object
to the form. By doing this, the form will get any data that isn’t present in the
post data from the user object.

We’re also using the form’s populate_obj method to re-populate the user
object with the contents of the validated form. This method is provided for
convenience, for use when the field names match the names on the object you’re
providing with data. Typically, you will want to assign the values manually, but
for this simple case it’s perfect. It can also be useful for CRUD and admin
forms.

Exploring in the console

WTForms forms are very simple container objects, and perhaps the easiest way to
find out what’s available to you in a form is to play around with a form in the
console:

>>> from wtforms import Form, StringField, validators
>>> class UsernameForm(Form):
... username = StringField('Username', [validators.Length(min=5)], default='test')
...
>>> form = UsernameForm()
>>> form['username']
<wtforms.fields.core.StringField object at ...>
>>> form.username.data
'test'
>>> form.validate()
False
>>> form.errors
{'username': ['Field must be at least 5 characters long.']}

What we’ve found here is that when you instantiate a form, it contains
instances of all the fields, which can be accessed via either dictionary-style
or attribute-style. These fields have their own properties, as does the enclosing form.

When we validate the form, it returns False, meaning at least one validator was
not satisfied. form.errors will give you a
summary of all the errors.

>>> form2 = UsernameForm(username='Robert')
>>> form2.data
{'username': 'Robert'}
>>> form2.validate()
True

This time, we passed a new value for username when instantiating UserForm, and
it was sufficient to validate the form.

How Forms get data

In addition to providing data using the first two arguments (formdata and
obj), you can pass keyword arguments to populate the form. Note though that a
few names are reserved: formdata, obj, and prefix.

formdata takes precedence over obj, which itself takes precedence over
keyword arguments. For example:

def change_username(request):
 user = request.current_user
 form = ChangeUsernameForm(request.POST, user, username='silly')
 if request.method == 'POST' and form.validate():
 user.username = form.username.data
 user.save()
 return redirect('change_username')
 return render_response('change_username.html', form=form)

While you almost never use all three methods together in practice, it
illustrates how WTForms looks up the username field:

	If a form was submitted (request.POST is not empty), process the form
input. Even if there was no form input for this field in particular, if
there exists form input of any sort, then we will process the form input.

	If there was no form input, then try the following in order:

	Check if user has an attribute named username.

	Check if a keyword argument named username was provided.

	Finally, if everything else fails, use the default value provided by the
field, if any.

Validators

Validation in WTForms is done by providing a field with a set of validators to
run when the containing form is validated. You provide these via the field
constructor’s second argument, validators:

class ChangeEmailForm(Form):
 email = StringField('Email', [validators.Length(min=6, max=120), validators.Email()])

You can provide any number of validators to a field. Typically, you will want to
provide a custom error message:

class ChangeEmailForm(Form):
 email = StringField('Email', [
 validators.Length(min=6, message=_('Little short for an email address?')),
 validators.Email(message=_('That\'s not a valid email address.'))
])

It is generally preferable to provide your own messages, as the default messages
by necessity are generic. This is also the way to provide localised error
messages.

For a list of all the built-in validators, check the Validators Reference

Rendering Fields

Rendering a field is as simple as coercing it to a string:

>>> from wtforms import Form, StringField
>>> class SimpleForm(Form):
... content = StringField('content')
...
>>> form = SimpleForm(content='foobar')
>>> str(form.content)
Markup('<input id="content" name="content" type="text" value="foobar">')

However, the real power comes from rendering the field with its __call__()
method. By calling the field, you can provide keyword arguments, which will be
injected as html attributes in the output:

>>> form.content(style="width: 200px;", class_="bar")
Markup('<input class="bar" id="content" name="content" style="width: 200px;" type="text" value="foobar">')

Now let’s apply this power to rendering a form in a Jinja [https://jinja.palletsprojects.com/] template.
First, our form:

class LoginForm(Form):
 username = StringField('Username')
 password = PasswordField('Password')

form = LoginForm()

And the template:

<form method="POST" action="/login">
 <div>{{ form.username.label }}: {{ form.username(class="css_class") }}</div>
 <div>{{ form.password.label }}: {{ form.password() }}</div>
</form>

Alternately, if you’re using Django templates, you can use the form_field
templatetag we provide in our Django extension, when you want to pass keyword
arguments:

{% load wtforms %}
<form method="POST" action="/login">
 <div>
 {{ form.username.label }}:
 {% form_field form.username class="css_class" %}
 </div>
 <div>
 {{ form.password.label }}:
 {{ form.password }}
 </div>
</form>

Both of these will output:

<form method="POST" action="/login">
 <div>
 <label for="username">Username</label>:
 <input class="css_class" id="username" name="username" type="text" value="" />
 </div>
 <div>
 <label for="password">Password</label>:
 <input id="password" name="password" type="password" value="" />
 </div>
</form>

WTForms is template engine agnostic, and will work with anything that allows
attribute access, string coercion, and/or function calls. The form_field
templatetag is provided as a convenience as you can’t pass arguments in Django
templates.

Displaying Errors

Now that we have a template for our form, let’s add error messages:

<form method="POST" action="/login">
 <div>{{ form.username.label }}: {{ form.username(class="css_class") }}</div>
 {% if form.username.errors %}
 <ul class="errors">{% for error in form.username.errors %}{{ error }}{% endfor %}
 {% endif %}

 <div>{{ form.password.label }}: {{ form.password() }}</div>
 {% if form.password.errors %}
 <ul class="errors">{% for error in form.password.errors %}{{ error }}{% endfor %}
 {% endif %}
</form>

If you prefer one big list of errors at the top, this is also easy:

{% if form.errors %}
 <ul class="errors">
 {% for field_name, field_errors in form.errors|dictsort if field_errors %}
 {% for error in field_errors %}
 {{ form[field_name].label }}: {{ error }}
 {% endfor %}
 {% endfor %}

{% endif %}

As error handling can become a rather verbose affair, it is preferable to use
Jinja macros (or equivalent) to reduce boilerplate in your templates.
(example)

Custom Validators

There are two ways to provide custom validators. By defining a custom validator
and using it on a field:

from wtforms.validators import ValidationError

def is_42(form, field):
 if field.data != 42:
 raise ValidationError('Must be 42')

class FourtyTwoForm(Form):
 num = IntegerField('Number', [is_42])

Or by providing an in-form field-specific validator:

class FourtyTwoForm(Form):
 num = IntegerField('Number')

 def validate_num(form, field):
 if field.data != 42:
 raise ValidationError('Must be 42')

For more complex validators that take parameters, check the Custom validators section.

Next Steps

The crash course has just skimmed the surface on how you can begin using
WTForms to handle form input and validation in your application. For more
information, you’ll want to check the following:

	The WTForms documentation has API documentation for the entire library.

	Solving Specific Problems can help you tackle specific
integration issues with WTForms and other frameworks.

Forms

Forms provide the highest level API in WTForms. They contain your field
definitions, delegate validation, take input, aggregate errors, and in
general function as the glue holding everything together.

The Form class

	
class wtforms.form.Form

	Declarative Form base class.

Construction

	
__init__(formdata=None, obj=None, prefix='', data=None, meta=None, **kwargs)

	
	Parameters:

	
	formdata – Input data coming from the client, usually
request.form or equivalent. Should provide a “multi
dict” interface to get a list of values for a given key,
such as what Werkzeug, Django, and WebOb provide.

	obj – Take existing data from attributes on this object
matching form field attributes. Only used if formdata is
not passed.

	prefix – If provided, all fields will have their name
prefixed with the value. This is for distinguishing multiple
forms on a single page. This only affects the HTML name for
matching input data, not the Python name for matching
existing data.

	data – Take existing data from keys in this dict matching
form field attributes. obj takes precedence if it also
has a matching attribute. Only used if formdata is not
passed.

	meta – A dict of attributes to override on this form’s
meta instance.

	extra_filters – A dict mapping field attribute names to
lists of extra filter functions to run. Extra filters run
after filters passed when creating the field. If the form
has filter_<fieldname>, it is the last extra filter.

	kwargs – Merged with data to allow passing existing
data as parameters. Overwrites any duplicate keys in
data. Only used if formdata is not passed.

Initialize a Form. This is usually done in the context of a
view/controller in your application. When a Form is constructed, the
fields populate their input based on the formdata, obj, and kwargs.

Note
Backing-store objects and kwargs are both expected to be provided
with the values being already-coerced datatypes. WTForms does not
check the types of incoming object-data or coerce them like it will
for formdata as it is expected this data is defaults or data from
a backing store which this form represents. See the section on
using Forms for more information.

Properties

	
data

	A dict containing the data for each field.

Note that this is generated each time you access the property, so care
should be taken when using it, as it can potentially be very expensive
if you repeatedly access it. Typically used if you need to iterate all
data in the form. If you just need to access the data for known fields,
you should use form.<field>.data, not this proxy property.

	
errors

	A dict containing a list of errors for each field. Empty if the form
hasn’t been validated, or there were no errors.

If present, the key None contains the content of
form_errors.

	
form_errors

	A list of form-level errors. Those are errors that does not concern a
particuliar field, but the whole form consistency. Those errors are
often set when overriding validate().

	
meta

	This is an object which contains various configuration options and also
ability to customize the behavior of the form. See the class Meta doc
for more information on what can be customized with the class Meta options.

Methods

	
validate(extra_validators=None)

	Validate the form by calling validate on each field.
Returns True if validation passes.

If the form defines a validate_<fieldname> method, it is
appended as an extra validator for the field’s validate.

	Parameters:

	extra_validators – A dict mapping field names to lists of
extra validator methods to run. Extra validators run after
validators passed when creating the field. If the form has
validate_<fieldname>, it is the last extra validator.

	
populate_obj(obj)

	Populates the attributes of the passed obj with data from the form’s
fields.

	Note:

	This is a destructive operation; Any attribute with the same name
as a field will be overridden. Use with caution.

One common usage of this is an edit profile view:

def edit_profile(request):
 user = User.objects.get(pk=request.session['userid'])
 form = EditProfileForm(request.POST, obj=user)

 if request.POST and form.validate():
 form.populate_obj(user)
 user.save()
 return redirect('/home')
 return render_to_response('edit_profile.html', form=form)

In the above example, because the form isn’t directly tied to the user
object, you don’t have to worry about any dirty data getting onto there
until you’re ready to move it over.

	
__iter__()

	Iterate form fields in creation order.

{% for field in form %}
 <tr>
 <th>{{ field.label }}</th>
 <td>{{ field }}</td>
 </tr>
{% endfor %}

	
__contains__(name)

	Returns True if the named field is a member of this form.

Defining Forms

To define a form, one makes a subclass of Form and defines the fields
declaratively as class attributes:

class MyForm(Form):
 first_name = StringField('First Name', validators=[validators.input_required()])
 last_name = StringField('Last Name', validators=[validators.optional()])

Field names can be any valid python identifier, with the following restrictions:

	Field names are case-sensitive.

	Field names may not begin with “_” (underscore)

	Field names may not begin with “validate”

Form Inheritance

Forms may subclass other forms as needed. The new form will contain all fields
of the parent form, as well as any new fields defined on the subclass. A field
name re-used on a subclass causes the new definition to obscure the original.

class PastebinEdit(Form):
 language = SelectField('Programming Language', choices=PASTEBIN_LANGUAGES)
 code = TextAreaField()

class PastebinEntry(PastebinEdit):
 name = StringField('User Name')

In-line Validators and Filters

In order to provide custom validation for a single field without needing to
write a one-time-use validator, validation can be defined inline by defining a
method with the convention validate_fieldname:

class SignupForm(Form):
 age = IntegerField('Age')

 def validate_age(form, field):
 if field.data < 13:
 raise ValidationError("We're sorry, you must be 13 or older to register")

The same principle applies for filters with the convention filter_fieldname:

class SignupForm(Form):
 name = StringField('name')

 def filter_name(form, field):
 return field.strip()

Note that filters are applied after processing the default and incoming data,
but before validation.

Using Forms

A form is most often constructed in the controller code for handling an action,
with the form data wrapper from the framework passed to its constructor, and
optionally an ORM object. A typical view begins something like:

def edit_article(request):
 article = Article.get(...)
 form = MyForm(request.POST, article)

A typical CRUD view has a user editing an object that needs various fields
updated. The Form would have fields describing the fields to be updated and
the validation rules, where the attribute names of the fields match those of
the attribute names on the object. The second parameter to the Form, the obj
parameter, is used to populate form defaults on the initial view.

Note

While we did pass an object as the data source, this object data is only
used if there is no POST data. If there is any POST data at all, then the
object data is ignored. This is done for security and consistency reasons.

This pattern is mostly a convenience since most application controllers
don’t separate GET and POST requests into separate view methods.

The constructed form can then validate any input data and generate errors if
invalid. Typically, the validation pattern in the view looks like:

if request.POST and form.validate():
 form.populate_obj(article)
 article.save()
 return redirect('/articles')

Note that we have it so validate() is only called if there is
POST data. The reason we gate the validation check this way is that when
there is no POST data (such as in a typical CRUD form) we don’t want to
cause validation errors.

Inside the gated block, we call populate_obj() to copy the data
onto fields on the ‘article’ object. We also then redirect after a successful
completion. The reason we redirect after the post is a best-practice associated
with the Post/Redirect/Get [https://en.wikipedia.org/wiki/Post/Redirect/Get]
design pattern.

If there is no POST data, or the data fails to validate, then the view “falls
through” to the rendering portion. The Form object can be passed into the
template and its attributes can be used to render the fields and also for
displaying errors:

return render('edit.html', form=form, article=article)

So there we have a full simple “edit object” page setup which
illustrates a best-practice way of using WTForms. This is by no means the only
way to use WTForms, but just an illustration of how the various features work.

Here is the full code for the view we just made:

def edit_article(request):
 article = Article.get(...)
 form = MyForm(request.POST, article)

 if request.POST and form.validate():
 form.populate_obj(article)
 article.save()
 return redirect('/articles')

 return render('edit.html', form=form, article=article)

Low-Level API

Warning

This section is provided for completeness; and is aimed at authors of
complementary libraries and those looking for very special behaviors.
Don’t use BaseForm unless you know exactly why you are using it.

For those looking to customize how WTForms works, for libraries or special
applications, it might be worth using the BaseForm class. BaseForm is
the parent class of Form, and most of the implementation
logic from Form is actually handled by BaseForm.

The major difference on the surface between BaseForm and Form is that
fields are not defined declaratively on a subclass of BaseForm. Instead, you
must pass a dict of fields to the constructor. Likewise, you cannot add fields
by inheritance. In addition, BaseForm does not provide: sorting fields by
definition order, or inline validate_foo validators. Because of this, for
the overwhelming majority of uses we recommend you use Form instead of BaseForm
in your code.

What BaseForm provides is a container for a collection of fields, which
it will bind at instantiation, and hold in an internal dict. Dict-style access
on a BaseForm instance will allow you to access (and modify) the enclosed
fields.

	
class wtforms.form.BaseForm

	Base Form Class. Provides core behaviour like field construction,
validation, and data and error proxying.

Construction

	
__init__(fields, prefix='', meta=<DefaultMeta>)

	
	Parameters:

	
	fields – A dict or sequence of 2-tuples of partially-constructed fields.

	prefix – If provided, all fields will have their name prefixed with the
value.

	meta – A meta instance which is used for configuration and customization
of WTForms behaviors.

form = BaseForm({
 'name': StringField(),
 'customer.age': IntegerField("Customer's Age")
})

Because BaseForm does not require field names to be valid identifiers,
they can be most any python string. We recommend keeping it
simple to avoid incompatibility with browsers and various form input
frameworks where possible.

Properties

	
data

	see Form.data

	
errors

	see Form.errors

Methods

	
process(formdata=None, obj=None, data=None, extra_filters=None, **kwargs)

	Process default and input data with each field.

	Parameters:

	
	formdata – Input data coming from the client, usually
request.form or equivalent. Should provide a “multi
dict” interface to get a list of values for a given key,
such as what Werkzeug, Django, and WebOb provide.

	obj – Take existing data from attributes on this object
matching form field attributes. Only used if formdata is
not passed.

	data – Take existing data from keys in this dict matching
form field attributes. obj takes precedence if it also
has a matching attribute. Only used if formdata is not
passed.

	extra_filters – A dict mapping field attribute names to
lists of extra filter functions to run. Extra filters run
after filters passed when creating the field. If the form
has filter_<fieldname>, it is the last extra filter.

	kwargs – Merged with data to allow passing existing
data as parameters. Overwrites any duplicate keys in
data. Only used if formdata is not passed.

Since BaseForm does not take its data at instantiation, you must call
this to provide form data to the enclosed fields. Accessing the field’s
data before calling process is not recommended.

	
validate(extra_validators=None)

	Validates the form by calling validate on each field.

	Parameters:

	extra_validators – If provided, is a dict mapping field names to a sequence of
callables which will be passed as extra validators to the field’s
validate method.

Returns True if no errors occur.

	
__iter__()

	Iterate form fields in creation order.

Unlike Form, fields are not iterated in definition order, but
rather in whatever order the dict decides to yield them.

	
__contains__(name)

	Returns True if the named field is a member of this form.

	
__getitem__(name)

	Dict-style access to this form’s fields.

	
__setitem__(name, value)

	Bind a field to this form.

form['openid.name'] = StringField()

Fields can be added and replaced in this way, but this must be done
before process() is called, or the fields will not have the
opportunity to receive input data. Similarly, changing fields after
validate() will have undesired effects.

	
__delitem__(name)

	Remove a field from this form.

The same caveats apply as with __setitem__().

Fields

Fields are responsible for rendering and data conversion. They delegate to
validators for data validation.

Field definitions

Fields are defined as members on a form in a declarative fashion:

class MyForm(Form):
 name = StringField('Full Name', [validators.required(), validators.length(max=10)])
 address = TextAreaField('Mailing Address', [validators.optional(), validators.length(max=200)])

When a field is defined on a form, the construction parameters are saved until
the form is instantiated. At form instantiation time, a copy of the field is
made with all the parameters specified in the definition. Each instance of the
field keeps its own field data and errors list.

The label and validators can be passed to the constructor as sequential
arguments, while all other arguments should be passed as keyword arguments.
Some fields (such as SelectField) can also take additional
field-specific keyword arguments. Consult the built-in fields reference for
information on those.

The Field base class

	
class wtforms.fields.Field

	Stores and processes data, and generates HTML for a form field.

Field instances contain the data of that instance as well as the
functionality to render it within your Form. They also contain a number of
properties which can be used within your templates to render the field and
label.

Construction

	
__init__(label=None, validators=None, filters=(), description='', id=None, default=None, widget=None, render_kw=None, name=None, _form=None, _prefix='', _translations=None, _meta=None)

	Construct a new field.

	Parameters:

	
	label – The label of the field.

	validators – A sequence of validators to call when validate is called.

	filters – A sequence of callable which are run by process()
to filter or transform the input data. For example
StringForm(filters=[str.strip, str.upper]).
Note that filters are applied after processing the default and
incoming data, but before validation.

	description – A description for the field, typically used for help text.

	id – An id to use for the field. A reasonable default is set by the form,
and you shouldn’t need to set this manually.

	default – The default value to assign to the field, if no form or object
input is provided. May be a callable.

	widget – If provided, overrides the widget used to render the field.

	render_kw (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If provided, a dictionary which provides default keywords that
will be given to the widget at render time.

	name – The HTML name of this field. The default value is the Python
attribute name.

	_form – The form holding this field. It is passed by the form itself during
construction. You should never pass this value yourself.

	_prefix – The prefix to prepend to the form name of this field, passed by
the enclosing form during construction.

	_translations – A translations object providing message translations. Usually
passed by the enclosing form during construction. See
I18n docs for information on message translations.

	_meta – If provided, this is the ‘meta’ instance from the form. You usually
don’t pass this yourself.

If _form isn’t provided, an UnboundField will be
returned instead. Call its bind() method with a form instance and
a name to construct the field.

Validation

To validate the field, call its validate method, providing a form and any
extra validators needed. To extend validation behaviour, override
pre_validate or post_validate.

	
validate(form, extra_validators=())

	Validates the field and returns True or False. self.errors will
contain any errors raised during validation. This is usually only
called by Form.validate.

Subfields shouldn’t override this, but rather override either
pre_validate, post_validate or both, depending on needs.

	Parameters:

	
	form – The form the field belongs to.

	extra_validators – A sequence of extra validators to run.

	
pre_validate(form)

	Override if you need field-level validation. Runs before any other
validators.

	Parameters:

	form – The form the field belongs to.

	
post_validate(form, validation_stopped)

	Override if you need to run any field-level validation tasks after
normal validation. This shouldn’t be needed in most cases.

	Parameters:

	
	form – The form the field belongs to.

	validation_stopped – True if any validator raised StopValidation.

	
errors

	If validate encounters any errors, they will be inserted into this
list.

Data access and processing

To handle incoming data from python, override process_data. Similarly, to
handle incoming data from the outside, override process_formdata.

	
process(formdata[, data])

	Process incoming data, calling process_data, process_formdata as needed,
and run filters.

If data is not provided, process_data will be called on the field’s
default.

Field subclasses usually won’t override this, instead overriding the
process_formdata and process_data methods. Only override this for
special advanced processing, such as when a field encapsulates many
inputs.

	Parameters:

	extra_filters – A sequence of extra filters to run.

	
process_data(value)

	Process the Python data applied to this field and store the result.

This will be called during form construction by the form’s kwargs or
obj argument.

	Parameters:

	value – The python object containing the value to process.

	
process_formdata(valuelist)

	Process data received over the wire from a form.

This will be called during form construction with data supplied
through the formdata argument.

	Parameters:

	valuelist – A list of strings to process.

	
data

	Contains the resulting (sanitized) value of calling either of the
process methods. Note that it is not HTML escaped when using in
templates.

	
raw_data

	If form data is processed, is the valuelist given from the formdata
wrapper. Otherwise, raw_data will be None.

	
object_data

	This is the data passed from an object or from kwargs to the field,
stored unmodified. This can be used by templates, widgets, validators
as needed (for comparison, for example)

Rendering

To render a field, simply call it, providing any values the widget expects
as keyword arguments. Usually the keyword arguments are used for extra HTML
attributes.

	
__call__(**kwargs)

	Render this field as HTML, using keyword args as additional attributes.

This delegates rendering to
meta.render_field
whose default behavior is to call the field’s widget, passing any
keyword arguments from this call along to the widget.

In all of the WTForms HTML widgets, keyword arguments are turned to
HTML attributes, though in theory a widget is free to do anything it
wants with the supplied keyword arguments, and widgets don’t have to
even do anything related to HTML.

If one wants to pass the “class” argument which is a reserved keyword
in some python-based templating languages, one can do:

form.field(class_="text_blob")

This will output (for a text field):

<input type="text" name="field_name" value="blah" class="text_blob" id="field_name" />

Note: Simply coercing the field to a string will render it as
if it was called with no arguments.

	
__html__()

	Returns a HTML representation of the field. For more powerful rendering,
see the __call__() method.

Many template engines use the __html__ method when it exists on a
printed object to get an ‘html-safe’ string that will not be
auto-escaped. To allow for printing a bare field without calling it,
all WTForms fields implement this method as well.

Message Translations

	
gettext(string)

	Get a translation for the given message.

This proxies for the internal translations object.

	Parameters:

	string – A string to be translated.

	Returns:

	A string which is the translated output.

	
ngettext(singular, plural, n)

	Get a translation for a message which can be pluralized.

	Parameters:

	
	singular (str [https://docs.python.org/3/library/stdtypes.html#str]) – The singular form of the message.

	plural (str [https://docs.python.org/3/library/stdtypes.html#str]) – The plural form of the message.

	n (int [https://docs.python.org/3/library/functions.html#int]) – The number of elements this message is referring to

Properties

	
name

	The HTML form name of this field. This is the name as defined in your
Form prefixed with the prefix passed to the Form constructor.

	
short_name

	The un-prefixed name of this field.

	
id

	The HTML ID of this field. If unspecified, this is generated for you to
be the same as the field name.

	
label

	This is a Label instance which when evaluated as a string
returns an HTML <label for="id"> construct.

	
default

	This is whatever you passed as the default to the field’s
constructor, otherwise None.

	
description

	A string containing the value of the description passed in the
constructor to the field; this is not HTML escaped.

	
errors

	A sequence containing the validation errors for this field.

	
process_errors

	Errors obtained during input processing. These will be prepended to the
list of errors at validation time.

	
widget

	The widget used to render the field.

	
type

	The type of this field, as a string. This can be used in your templates
to do logic based on the type of field:

{% for field in form %}
 <tr>
 {% if field.type == "BooleanField" %}
 <td></td>
 <td>{{ field }} {{ field.label }}</td>
 {% else %}
 <td>{{ field.label }}</td>
 <td>{{ field }}</td>
 {% endif %}
 </tr>
{% endfor %}

	
flags

	An object containing flags set either by the field itself, or
by validators on the field. For example, the built-in
InputRequired validator sets the required flag.
An unset flag will result in None.

{% for field in form %}
 <tr>
 <th>{{ field.label }} {% if field.flags.required %}*{% endif %}</th>
 <td>{{ field }}</td>
 </tr>
{% endfor %}

	
meta

	The same meta object instance as is available as
Form.meta

	
filters

	The same sequence of filters that was passed as the filters= to
the field constructor. This is usually a sequence of callables.

Basic fields

Basic fields generally represent scalar data types with single values, and
refer to a single input from the form.

	
class wtforms.fields.BooleanField(default field arguments, false_values=None)

	Represents an <input type="checkbox">. Set the checked-status by using the
default-option. Any value for default, e.g. default="checked" puts
checked into the html-element and sets the data to True

	Parameters:

	false_values – If provided, a sequence of strings each of which is an exact match
string of what is considered a “false” value. Defaults to the tuple
(False, "false", "")

	
class wtforms.fields.DateField(default field arguments, format='%Y-%m-%d')

	Same as DateTimeField, except stores a
datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date].

	
class wtforms.fields.DateTimeField(default field arguments, format='%Y-%m-%d %H:%M:%S')

	A text field which stores a datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] matching one or
several formats. If format is a list, any input value matching any
format will be accepted, and the first format in the list will be used
to produce HTML values.

	
class wtforms.fields.DateTimeLocalField(default field arguments, format='%Y-%m-%d %H:%M:%S')

	Same as DateTimeField, but represents an
<input type="datetime-local">.

	
class wtforms.fields.DecimalField(default field arguments, places=2, rounding=None, use_locale=False, number_format=None)

	A text field which displays and coerces data of the decimal.Decimal type.

	Parameters:

	
	places – How many decimal places to quantize the value to for display on form.
If unset, use 2 decimal places.
If explicitely set to None, does not quantize value.

	rounding – How to round the value during quantize, for example
decimal.ROUND_UP. If unset, uses the rounding value from the
current thread’s context.

	use_locale – If True, use locale-based number formatting. Locale-based number
formatting requires the ‘babel’ package.

	number_format – Optional number format for locale. If omitted, use the default decimal
format for the locale.

	
class wtforms.fields.DecimalRangeField(default field arguments)

	Represents an <input type="range">.

	
class wtforms.fields.EmailField(default field arguments)

	Represents an <input type="email">.

	
class wtforms.fields.FileField(default field arguments)

	Renders a file upload field.

By default, the value will be the filename sent in the form data.
WTForms does not deal with frameworks’ file handling capabilities.
A WTForms extension for a framework may replace the filename value
with an object representing the uploaded data.

Example usage:

class UploadForm(Form):
 image = FileField('Image File', [validators.regexp('^[^/\\]\.jpg$')])
 description = TextAreaField('Image Description')

 def validate_image(form, field):
 if field.data:
 field.data = re.sub(r'[^a-z0-9_.-]', '_', field.data)

def upload(request):
 form = UploadForm(request.POST)
 if form.image.data:
 image_data = request.FILES[form.image.name].read()
 open(os.path.join(UPLOAD_PATH, form.image.data), 'w').write(image_data)

	
class wtforms.fields.MultipleFileField(default field arguments)

	A FileField that allows choosing multiple files.

	
class wtforms.fields.FloatField(default field arguments)

	A text field, except all input is coerced to an float. Erroneous input
is ignored and will not be accepted as a value.

For the majority of uses, DecimalField is preferable to FloatField,
except for in cases where an IEEE float is absolutely desired over a decimal
value.

	
class wtforms.fields.IntegerField(default field arguments)

	A text field, except all input is coerced to an integer. Erroneous input
is ignored and will not be accepted as a value.

	
class wtforms.fields.IntegerRangeField(default field arguments)

	Represents an <input type="range">.

	
class wtforms.fields.MonthField(default field arguments, format='%Y-%m')

	Same as DateField, except represents a month,
stores a datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date] with day = 1.

	
class wtforms.fields.RadioField(default field arguments, choices=[], coerce=str)

	Like a SelectField, except displays a list of radio buttons.

Iterating the field will produce subfields (each containing a label as
well) in order to allow custom rendering of the individual radio fields.

{% for subfield in form.radio %}
 <tr>
 <td>{{ subfield }}</td>
 <td>{{ subfield.label }}</td>
 </tr>
{% endfor %}

Simply outputting the field without iterating its subfields will result in
a list of radio choices.

	
class wtforms.fields.SelectField(default field arguments, choices=[], coerce=str, option_widget=None, validate_choice=True)

	Select fields take a choices parameter which is either:

	a list of (value, label) or (value, label, render_kw) tuples.
It can also be a list of only values, in which case the value is used
as the label. If set, the render_kw dictionnary will be rendered as
HTML <option> parameters. The value can be of any
type, but because form data is sent to the browser as strings, you
will need to provide a coerce function that converts a string
back to the expected type.

	a dictionary of {label: list} pairs defining groupings of options.

	a function taking no argument, and returning either a list or a dictionary.

Select fields with static choice values:

class PastebinEntry(Form):
 language = SelectField('Programming Language', choices=[('cpp', 'C++'), ('py', 'Python'), ('text', 'Plain Text')])

Note that the choices keyword is only evaluated once, so if you want to make
a dynamic drop-down list, you’ll want to assign the choices list to the field
after instantiation. Any submitted choices which are not in the given choices
list will cause validation on the field to fail. If this option cannot be
applied to your problem you may wish to skip choice validation (see below).

Select fields with dynamic choice values:

class UserDetails(Form):
 group_id = SelectField('Group', coerce=int)

def edit_user(request, id):
 user = User.query.get(id)
 form = UserDetails(request.POST, obj=user)
 form.group_id.choices = [(g.id, g.name) for g in Group.query.order_by('name')]

Note we didn’t pass a choices to the SelectField
constructor, but rather created the list in the view function. Also, the
coerce keyword arg to SelectField says that we
use int() to coerce form data. The default coerce is
str().

Coerce function example:

def coerce_none(value):
 if value == 'None':
 return None
 return value

class NonePossible(Form):
 my_select_field = SelectField('Select an option', choices=[('1', 'Option 1'), ('2', 'Option 2'), ('None', 'No option')], coerce=coerce_none)

Note when the option None is selected a ‘None’ str will be passed. By using a coerce
function the ‘None’ str will be converted to None.

Skipping choice validation:

class DynamicSelectForm(Form):
 dynamic_select = SelectField("Choose an option", validate_choice=False)

Note the validate_choice parameter - by setting this to False we
are telling the SelectField to skip the choice validation step and instead
to accept any inputted choice without checking to see if it was one of the
given choices. This should only really be used in situations where you
cannot use dynamic choice values as shown above - for example where the
choices of a SelectField are determined
dynamically by another field on the page, such as choosing a country and
state/region.

Advanced functionality

SelectField and its descendants are iterable, and iterating it will produce
a list of fields each representing an option. The rendering of this can be
further controlled by specifying option_widget=.

	
class wtforms.fields.SearchField(default field arguments)

	Represents an <input type="search">.

	
class wtforms.fields.SelectMultipleField(default field arguments, choices=[], coerce=str, option_widget=None)

	No different from a normal select field, except this one can take (and
validate) multiple choices. You’ll need to specify the HTML size
attribute to the select field when rendering.

The data on the SelectMultipleField is stored as a list of objects, each of
which is checked and coerced from the form input. Any submitted choices
which are not in the given choices list will cause validation on the field
to fail.

	
class wtforms.fields.SubmitField(default field arguments)

	Represents an <input type="submit">. This allows checking if a given
submit button has been pressed.

	
class wtforms.fields.StringField(default field arguments)

	This field is the base for most of the more complicated fields, and
represents an <input type="text">.

{{ form.username(size=30, maxlength=50) }}

	
class wtforms.fields.TelField(default field arguments)

	Represents an <input type="tel">.

	
class wtforms.fields.TimeField(default field arguments, format='%H:%M')

	Same as DateTimeField, except stores a
datetime.time [https://docs.python.org/3/library/datetime.html#datetime.time].

	
class wtforms.fields.URLField(default field arguments)

	Represents an <input type="url">.

Convenience Fields

	
class wtforms.fields.HiddenField(default field arguments)

	HiddenField is a convenience for a StringField with a HiddenInput widget.

It will render as an <input type="hidden"> but otherwise coerce to a string.

HiddenField is useful for providing data from a model or the application to
be used on the form handler side for making choices or finding records.
Very frequently, CRUD forms will use the hidden field for an object’s id.

Hidden fields are like any other field in that they can take validators and
values and be accessed on the form object. You should consider validating
your hidden fields just as you’d validate an input field, to prevent from
malicious people playing with your data.

	
class wtforms.fields.PasswordField(default field arguments)

	A StringField, except renders an <input type="password">.

Also, whatever value is accepted by this field is not rendered back
to the browser like normal fields.

	
class wtforms.fields.TextAreaField(default field arguments)

	This field represents an HTML <textarea> and can be used to take
multi-line input.

	
class wtforms.fields.ColorField(default field arguments)

	Represents an <input type="color">.

Field Enclosures

Field enclosures allow you to have fields which represent a collection of
fields, so that a form can be composed of multiple re-usable components or more
complex data structures such as lists and nested objects can be represented.

	
class wtforms.fields.FormField(form_class, default field arguments, separator='-')

	Encapsulate a form as a field in another form.

	Parameters:

	
	form_class – A subclass of Form that will be encapsulated.

	separator – A string which will be suffixed to this field’s name to create the
prefix to enclosed fields. The default is fine for most uses.

FormFields are useful for editing child objects or enclosing multiple
related forms on a page which are submitted and validated together. While
subclassing forms captures most desired behaviours, sometimes for
reusability or purpose of combining with FieldList, FormField makes
sense.

For example, take the example of a contact form which uses a similar set of
three fields to represent telephone numbers:

class TelephoneForm(Form):
 country_code = IntegerField('Country Code', [validators.required()])
 area_code = IntegerField('Area Code/Exchange', [validators.required()])
 number = StringField('Number')

class ContactForm(Form):
 first_name = StringField()
 last_name = StringField()
 mobile_phone = FormField(TelephoneForm)
 office_phone = FormField(TelephoneForm)

In the example, we reused the TelephoneForm to encapsulate the common
telephone entry instead of writing a custom field to handle the 3
sub-fields. The data property of the mobile_phone field will return the
data dict of the enclosed form. Similarly, the
errors property encapsulate the forms’ errors.

	
class wtforms.fields.FieldList(unbound_field, default field arguments, min_entries=0, max_entries=None, separator='-')

	Encapsulate an ordered list of multiple instances of the same field type,
keeping data as a list.

>>> authors = FieldList(StringField('Name', [validators.DataRequired()]))

	Parameters:

	
	unbound_field – A partially-instantiated field definition, just like that would be
defined on a form directly.

	min_entries – if provided, always have at least this many entries on the field,
creating blank ones if the provided input does not specify a sufficient
amount.

	max_entries – accept no more than this many entries as input, even if more exist in
formdata.

	separator – A string which will be suffixed to this field’s name to create the
prefix to enclosed list entries. The default is fine for most uses.

Note: Due to a limitation in how HTML sends values, FieldList cannot enclose
BooleanField or SubmitField instances.

	
append_entry([data])

	Create a new entry with optional default data.

Entries added in this way will not receive formdata however, and can
only receive object data.

	
pop_entry()

	Removes the last entry from the list and returns it.

	
entries

	Each entry in a FieldList is actually an instance of the field you
passed in. Iterating, checking the length of, and indexing the
FieldList works as expected, and proxies to the enclosed entries list.

Do not resize the entries list directly, this will result in
undefined behavior. See append_entry and pop_entry for ways you can
manipulate the list.

	
__iter__()

	

	
__len__()

	

	
__getitem__(index)

	

FieldList is not limited to enclosing simple fields; and can
indeed represent a list of enclosed forms by combining FieldList with
FormField:

class IMForm(Form):
 protocol = SelectField(choices=[('aim', 'AIM'), ('msn', 'MSN')])
 username = StringField()

class ContactForm(Form):
 first_name = StringField()
 last_name = StringField()
 im_accounts = FieldList(FormField(IMForm))

Custom Fields

While WTForms provides customization for existing fields using widgets and
keyword argument attributes, sometimes it is necessary to design custom fields
to handle special data types in your application.

Let’s design a field which represents a comma-separated list of tags:

class TagListField(Field):
 widget = TextInput()

 def _value(self):
 if self.data:
 return ', '.join(self.data)
 else:
 return ''

 def process_formdata(self, valuelist):
 if valuelist:
 self.data = [x.strip() for x in valuelist[0].split(',')]
 else:
 self.data = []

The _value method is called by the TextInput widget
to provide the value that is displayed in the form. Overriding the
process_formdata() method processes the incoming form data back
into a list of tags.

Fields With Custom Constructors

Custom fields can also override the default field constructor if needed to
provide additional customization:

class BetterTagListField(TagListField):
 def __init__(self, label=None, validators=None, remove_duplicates=True, **kwargs):
 super(BetterTagListField, self).__init__(label, validators, **kwargs)
 self.remove_duplicates = remove_duplicates

 def process_formdata(self, valuelist):
 super(BetterTagListField, self).process_formdata(valuelist)
 if self.remove_duplicates:
 self.data = list(self._remove_duplicates(self.data))

 @classmethod
 def _remove_duplicates(cls, seq):
 """Remove duplicates in a case insensitive, but case preserving manner"""
 d = {}
 for item in seq:
 if item.lower() not in d:
 d[item.lower()] = True
 yield item

When you override a Field’s constructor, to maintain consistent behavior, you
should design your constructor so that:

	You take label=’’, validators=None as the first two positional arguments

	Add any additional arguments your field takes as keyword arguments after the
label and validators

	Take **kwargs to catch any additional keyword arguments.

	Call the Field constructor first, passing the first two positional
arguments, and all the remaining keyword args.

Considerations for overriding process()

For the vast majority of fields, it is not necessary to override
Field.process(). Most of the time, you can achieve what is needed by
overriding process_data and/or process_formdata. However, for special
types of fields, such as form enclosures and other special cases of handling
multiple values, it may be needed.

If you are going to override process(), be careful about how you deal with
the formdata parameter. For compatibility with the maximum number of
frameworks, we suggest you limit yourself to manipulating formdata in the
following ways only:

	Testing emptiness: if formdata

	Checking for key existence: key in formdata

	Iterating all keys: for key in formdata (note that some wrappers may
return multiple instances of the same key)

	Getting the list of values for a key: formdata.getlist(key).

Most importantly, you should not use dictionary-style access to work with your
formdata wrapper, because the behavior of this is highly variant on the
wrapper: some return the first item, others return the last, and some may
return a list.

Additional Helper Classes

	
class wtforms.fields.Flags

	Holds a set of flags as attributes.

Accessing a non-existing attribute returns None for its value.

Usage:

>>> flags = Flags()
>>> flags.required = True
>>> 'required' in flags
True
>>> flags.nonexistent
>>> 'nonexistent' in flags
False

	
class wtforms.fields.Label

	On all fields, the label property is an instance of this class.
Labels can be printed to yield a
<label for="field_id">Label Text</label>
HTML tag enclosure. Similar to fields, you can also call the label with
additional html params.

	
field_id

	The ID of the field which this label will reference.

	
text

	The original label text passed to the field’s constructor.

Validators

A validator simply takes an input, verifies it fulfills some criterion, such as
a maximum length for a string and returns. Or, if the validation fails, raises
a ValidationError. This system is very simple and
flexible, and allows you to chain any number of validators on fields.

	
class wtforms.validators.ValidationError(message='', *args, **kwargs)

	Raised when a validator fails to validate its input.

	
class wtforms.validators.StopValidation(message='', *args, **kwargs)

	Causes the validation chain to stop.

If StopValidation is raised, no more validators in the validation chain are
called. If raised with a message, the message will be added to the errors
list.

Built-in validators

	
class wtforms.validators.DataRequired(message=None)

	Checks the field’s data is ‘truthy’ otherwise stops the validation chain.

This validator checks that the data attribute on the field is a ‘true’
value (effectively, it does if field.data.) Furthermore, if the data
is a string type, a string containing only whitespace characters is
considered false.

If the data is empty, also removes prior errors (such as processing errors)
from the field.

NOTE this validator used to be called Required but the way it behaved
(requiring coerced data, not input data) meant it functioned in a way
which was not symmetric to the Optional validator and furthermore caused
confusion with certain fields which coerced data to ‘falsey’ values like
0, Decimal(0), time(0) etc. Unless a very specific reason
exists, we recommend using the InputRequired instead.

	Parameters:

	message – Error message to raise in case of a validation error.

Sets the required attribute on widgets.

This also sets the required flag on
fields it is used on. This flag causes the required attribute to be
rendered in the tag, which prevents a request/response cycle for validation.
This behavior can be overridden in the following ways:

	Specifying required=False when rendering in the template.

	Making a custom a widget that doesn’t set it.

	Rendering the novalidate attribute” on the form tag, or the
formnovalidate attribute on a submit button.

The required flag behavior also applies to the InputRequired class.

	
class wtforms.validators.Email(message=None, granular_message=False, check_deliverability=False, allow_smtputf8=True, allow_empty_local=False)

	Validates an email address. Requires email_validator package to be
installed. For ex: pip install wtforms[email].

	Parameters:

	
	message – Error message to raise in case of a validation error.

	granular_message – Use validation failed message from email_validator library
(Default False).

	check_deliverability – Perform domain name resolution check (Default False).

	allow_smtputf8 – Fail validation for addresses that would require SMTPUTF8
(Default True).

	allow_empty_local – Allow an empty local part (i.e. @example.com), e.g. for validating
Postfix aliases (Default False).

	
class wtforms.validators.EqualTo(fieldname, message=None)

	Compares the values of two fields.

	Parameters:

	
	fieldname – The name of the other field to compare to.

	message – Error message to raise in case of a validation error. Can be
interpolated with %(other_label)s and %(other_name)s to provide a
more helpful error.

This validator can be used to facilitate in one of the most common
scenarios, the password change form:

class ChangePassword(Form):
 password = PasswordField('New Password', [InputRequired(), EqualTo('confirm', message='Passwords must match')])
 confirm = PasswordField('Repeat Password')

In the example, we use the InputRequired validator to prevent the EqualTo
validator from trying to see if the passwords do not match if there was no
passwords specified at all. Because InputRequired stops the validation chain,
EqualTo is not run in the case the password field is left empty.

	
class wtforms.validators.InputRequired(message=None)

	Validates that input was provided for this field.

Note there is a distinction between this and DataRequired in that
InputRequired looks that form-input data was provided, and DataRequired
looks at the post-coercion data. This means that this validator only checks
whether non-empty data was sent, not whether non-empty data was coerced
from that data. Initially populated data is not considered sent.

Sets the required attribute on widgets.

This also sets the required flag on
fields it is used on. See DataRequired for a description of behavior
regarding this flag.

	
class wtforms.validators.IPAddress(ipv4=True, ipv6=False, message=None)

	Validates an IP address.

	Parameters:

	
	ipv4 – If True, accept IPv4 addresses as valid (default True)

	ipv6 – If True, accept IPv6 addresses as valid (default False)

	message – Error message to raise in case of a validation error.

	
class wtforms.validators.Length(min=-1, max=-1, message=None)

	Validates the length of a string.

	Parameters:

	
	min – The minimum required length of the string. If not provided, minimum
length will not be checked.

	max – The maximum length of the string. If not provided, maximum length
will not be checked.

	message – Error message to raise in case of a validation error. Can be
interpolated using %(min)d and %(max)d if desired. Useful defaults
are provided depending on the existence of min and max.

When supported, sets the minlength and maxlength attributes on widgets.

	
class wtforms.validators.MacAddress(message=None)

	Validates a MAC address.

	Parameters:

	message – Error message to raise in case of a validation error.

	
class wtforms.validators.NumberRange(min=None, max=None, message=None)

	Validates that a number is of a minimum and/or maximum value, inclusive.
This will work with any comparable number type, such as floats and
decimals, not just integers.

	Parameters:

	
	min – The minimum required value of the number. If not provided, minimum
value will not be checked.

	max – The maximum value of the number. If not provided, maximum value
will not be checked.

	message – Error message to raise in case of a validation error. Can be
interpolated using %(min)s and %(max)s if desired. Useful defaults
are provided depending on the existence of min and max.

When supported, sets the min and max attributes on widgets.

	
class wtforms.validators.Optional(strip_whitespace=True)

	Allows empty input and stops the validation chain from continuing.

If input is empty, also removes prior errors (such as processing errors)
from the field.

	Parameters:

	strip_whitespace – If True (the default) also stop the validation chain on input which
consists of only whitespace.

Sets the optional attribute on widgets.

This also sets the optional flag on
fields it is used on.

	
class wtforms.validators.Regexp(regex, flags=0, message=None)

	Validates the field against a user provided regexp.

	Parameters:

	
	regex – The regular expression string to use. Can also be a compiled regular
expression pattern.

	flags – The regexp flags to use, for example re.IGNORECASE. Ignored if
regex is not a string.

	message – Error message to raise in case of a validation error.

	
class wtforms.validators.URL(require_tld=True, allow_ip=True, message=None)

	Simple regexp based url validation. Much like the email validator, you
probably want to validate the url later by other means if the url must
resolve.

	Parameters:

	
	require_tld – If true, then the domain-name portion of the URL must contain a .tld
suffix. Set this to false if you want to allow domains like
localhost.

	allow_ip – If false, then give ip as host will fail validation

	message – Error message to raise in case of a validation error.

	
class wtforms.validators.UUID(message=None)

	Validates a UUID.

	Parameters:

	message – Error message to raise in case of a validation error.

	
class wtforms.validators.AnyOf(values, message=None, values_formatter=None)

	Compares the incoming data to a sequence of valid inputs.

	Parameters:

	
	values – A sequence of valid inputs.

	message – Error message to raise in case of a validation error. %(values)s
contains the list of values.

	values_formatter – Function used to format the list of values in the error message.

	
class wtforms.validators.NoneOf(values, message=None, values_formatter=None)

	Compares the incoming data to a sequence of invalid inputs.

	Parameters:

	
	values – A sequence of invalid inputs.

	message – Error message to raise in case of a validation error. %(values)s
contains the list of values.

	values_formatter – Function used to format the list of values in the error message.

	
class wtforms.validators.ReadOnly

	Set a field readonly.

Validation fails if the form data is different than the
field object data, or if unset, from the field default data.

	
class wtforms.validators.Disabled

	Set a field disabled.

Validation fails if the form data has any value.

Custom validators

We will step through the evolution of writing a length-checking validator
similar to the built-in Length validator, starting from a
case-specific one to a generic reusable validator.

Let’s start with a simple form with a name field and its validation:

class MyForm(Form):
 name = StringField('Name', [InputRequired()])

 def validate_name(form, field):
 if len(field.data) > 50:
 raise ValidationError('Name must be less than 50 characters')

Above, we show the use of an in-line validator to do
validation of a single field. In-line validators are good for validating
special cases, but are not easily reusable. If, in the example above, the
name field were to be split into two fields for first name and surname, you
would have to duplicate your work to check two lengths.

So let’s start on the process of splitting the validator out for re-use:

def my_length_check(form, field):
 if len(field.data) > 50:
 raise ValidationError('Field must be less than 50 characters')

class MyForm(Form):
 name = StringField('Name', [InputRequired(), my_length_check])

All we’ve done here is move the exact same code out of the class and as a
function. Since a validator can be any callable which accepts the two
positional arguments form and field, this is perfectly fine, but the validator
is very special-cased.

Instead, we can turn our validator into a more powerful one by making it a
factory which returns a callable:

def length(min=-1, max=-1):
 message = 'Must be between %d and %d characters long.' % (min, max)

 def _length(form, field):
 l = field.data and len(field.data) or 0
 if l < min or max != -1 and l > max:
 raise ValidationError(message)

 return _length

class MyForm(Form):
 name = StringField('Name', [InputRequired(), length(max=50)])

Now we have a configurable length-checking validator that handles both minimum
and maximum lengths. When length(max=50) is passed in your validators list,
it returns the enclosed _length function as a closure, which is used in the
field’s validation chain.

This is now an acceptable validator, but we recommend that for reusability, you
use the pattern of allowing the error message to be customized via passing a
message= parameter:

class Length(object):
 def __init__(self, min=-1, max=-1, message=None):
 self.min = min
 self.max = max
 if not message:
 message = 'Field must be between %i and %i characters long.' % (min, max)
 self.message = message

 def __call__(self, form, field):
 l = field.data and len(field.data) or 0
 if l < self.min or self.max != -1 and l > self.max:
 raise ValidationError(self.message)

length = Length

In addition to allowing the error message to be customized, we’ve now converted
the length validator to a class. This wasn’t necessary, but we did this to
illustrate how one would do so. Because fields will accept any callable as a
validator, callable classes are just as applicable. For complex validators, or
using inheritance, you may prefer this.

We aliased the Length class back to the original length name in the
above example. This allows you to keep API compatibility as you move your
validators from factories to classes, and thus we recommend this for those
writing validators they will share.

Setting flags on the field with validators

Sometimes, it’s useful to know if a validator is present on a given field, like
for use in template code. To do this, validators are allowed to specify flags
which will then be available on the field's flags object. Some of the built-in validators such as
Required already do this.

To specify flags on your validator, set the field_flags attribute on your
validator. When the Field is constructed, the flags with the same name will be
set on your field. For example, let’s imagine a validator that
validates that input is valid BBCode. We can set a flag on the field then to
signify that the field accepts BBCode:

class implementation
class ValidBBCode(object):
 def __init__(self):
 self.field_flags = {'accepts_bbcode': True}

factory implementation
def valid_bbcode():
 def _valid_bbcode(form, field):
 pass # validator implementation here

 _valid_bbcode.field_flags = {'accepts_bbcode': True}
 return _valid_bbcode

Then we can check it in our template, so we can then place a note to the user:

{{ field(rows=7, cols=70) }}
{% if field.flags.accepts_bbcode %}
 <div class="note">This field accepts BBCode formatting as input.</div>
{% endif %}

Some considerations on using flags:

	Boolean flags will set HTML valueless attributes (e.g. {required: True}
will give <input type=”text” required>). Other flag types will set regular
HTML attributes (e.g. {maxlength: 8} will give <input type=”text” maxlength=”8”>).

	If multiple validators set the same flag, the flag will have the value set
by the first validator.

	Flags are set from validators only in Field.__init__(), so inline
validators and extra passed-in validators cannot set them.

Widgets

Widgets are classes whose purpose are to render a field to its usable
representation, usually XHTML. When a field is called, the default behaviour
is to delegate the rendering to its widget. This abstraction is provided so
that widgets can easily be created to customize the rendering of existing
fields.

Note All built-in widgets will return upon rendering a “HTML-safe” unicode
string subclass that many templating frameworks (Jinja, Mako, Genshi) will
recognize as not needing to be auto-escaped.

Built-in widgets

	
class wtforms.widgets.ColorInput(input_type=None)

	Renders an input with type “color”.

	
class wtforms.widgets.CheckboxInput(input_type=None)

	Render a checkbox.

The checked HTML attribute is set if the field’s data is a non-false value.

	
class wtforms.widgets.DateTimeInput(input_type=None)

	Renders an input with type “datetime”.

	
class wtforms.widgets.DateTimeLocalInput(input_type=None)

	Renders an input with type “datetime-local”.

	
class wtforms.widgets.DateInput(input_type=None)

	Renders an input with type “date”.

	
class wtforms.widgets.EmailInput(input_type=None)

	Renders an input with type “email”.

	
class wtforms.widgets.FileInput(multiple=False)

	Render a file chooser input.

	Parameters:

	multiple – allow choosing multiple files

	
class wtforms.widgets.HiddenInput(*args, **kwargs)

	Render a hidden input.

	
class wtforms.widgets.Input(input_type=None)

	Render a basic <input> field.

This is used as the basis for most of the other input fields.

By default, the _value() method will be called upon the associated field
to provide the value= HTML attribute.

	
class wtforms.widgets.ListWidget(html_tag='ul', prefix_label=True)

	Renders a list of fields as a ul or ol list.

This is used for fields which encapsulate many inner fields as subfields.
The widget will try to iterate the field to get access to the subfields and
call them to render them.

If prefix_label is set, the subfield’s label is printed before the field,
otherwise afterwards. The latter is useful for iterating radios or
checkboxes.

	
class wtforms.widgets.MonthInput(input_type=None)

	Renders an input with type “month”.

	
class wtforms.widgets.NumberInput(step=None, min=None, max=None)

	Renders an input with type “number”.

	
class wtforms.widgets.PasswordInput(hide_value=True)

	Render a password input.

For security purposes, this field will not reproduce the value on a form
submit by default. To have the value filled in, set hide_value to
False.

	
class wtforms.widgets.RadioInput(input_type=None)

	Render a single radio button.

This widget is most commonly used in conjunction with ListWidget or some
other listing, as singular radio buttons are not very useful.

	
class wtforms.widgets.RangeInput(step=None)

	Renders an input with type “range”.

	
class wtforms.widgets.SubmitInput(input_type=None)

	Renders a submit button.

The field’s label is used as the text of the submit button instead of the
data on the field.

	
class wtforms.widgets.SearchInput(input_type=None)

	Renders an input with type “search”.

	
class wtforms.widgets.Select(multiple=False)

	Renders a select field.

If multiple is True, then the size property should be specified on
rendering to make the field useful.

The field must provide an iter_choices() method which the widget will
call on rendering; this method must yield tuples of
(value, label, selected) or (value, label, selected, render_kw).
It also must provide a has_groups() method which tells whether choices
are divided into groups, and if they do, the field must have an
iter_groups() method that yields tuples of (label, choices), where
choices is a iterable of (value, label, selected) tuples.

	
class wtforms.widgets.TableWidget(with_table_tag=True)

	Renders a list of fields as a set of table rows with th/td pairs.

If with_table_tag is True, then an enclosing <table> is placed around the
rows.

Hidden fields will not be displayed with a row, instead the field will be
pushed into a subsequent table row to ensure XHTML validity. Hidden fields
at the end of the field list will appear outside the table.

	
class wtforms.widgets.TelInput(input_type=None)

	Renders an input with type “tel”.

	
class wtforms.widgets.TextArea

	Renders a multi-line text area.

rows and cols ought to be passed as keyword args when rendering.

	
class wtforms.widgets.TextInput(input_type=None)

	Render a single-line text input.

	
class wtforms.widgets.TimeInput(input_type=None)

	Renders an input with type “time”.

	
class wtforms.widgets.URLInput(input_type=None)

	Renders an input with type “url”.

	
class wtforms.widgets.WeekInput(input_type=None)

	Renders an input with type “week”.

Widget-Building Utilities

These utilities are used in WTForms widgets to help render HTML and also in
order to work along with HTML templating frameworks. They can be imported for
use in building custom widgets as well.

	
wtforms.widgets.html_params(**kwargs)

	Generate HTML attribute syntax from inputted keyword arguments.

The output value is sorted by the passed keys, to provide consistent output
each time this function is called with the same parameters. Because of the
frequent use of the normally reserved keywords class and for, suffixing
these with an underscore will allow them to be used.

In order to facilitate the use of data- and aria- attributes, if the
name of the attribute begins with data_ or aria_, then every
underscore will be replaced with a hyphen in the generated attribute.

>>> html_params(data_attr='user.name', aria_labeledby='name')
'data-attr="user.name" aria-labeledby="name"'

	In addition, the values True and False are special:
	
	attr=True generates the HTML compact output of a boolean attribute,
e.g. checked=True will generate simply checked

	attr=False will be ignored and generate no output.

>>> html_params(name='text1', id='f', class_='text')
'class="text" id="f" name="text1"'
>>> html_params(checked=True, readonly=False, name="text1", abc="hello")
'abc="hello" checked name="text1"'

Changelog
Changed in version 3.0: aria_ args convert underscores to hyphens like data_
args.

Changed in version 2.2: data_ args convert all underscores to hyphens, instead of
only the first one.

WTForms uses MarkupSafe [https://markupsafe.palletsprojects.com/] to escape unsafe HTML characters before
rendering. You can mark a string using markupsafe.Markup to
indicate that it should not be escaped.

Custom widgets

Widgets, much like validators, provide a simple callable contract. Widgets can
take customization arguments through a constructor if needed as well. When
the field is called or printed, it will call the widget with itself as the
first argument and then any additional arguments passed to its caller as
keywords. Passing the field is done so that one instance of a widget might be
used across many field instances.

Let’s look at a widget which renders a text field with an additional class if
there are errors:

class MyTextInput(TextInput):
 def __init__(self, error_class='has_errors'):
 super(MyTextInput, self).__init__()
 self.error_class = error_class

 def __call__(self, field, **kwargs):
 if field.errors:
 c = kwargs.pop('class', '') or kwargs.pop('class_', '')
 kwargs['class'] = '%s %s' % (self.error_class, c)
 return super(MyTextInput, self).__call__(field, **kwargs)

In the above example, we extended the behavior of the existing
TextInput widget to append a CSS class as needed. However, widgets
need not extend from an existing widget, and indeed don’t even have to be a
class. For example, here is a widget that renders a
SelectMultipleField as a collection of checkboxes:

def select_multi_checkbox(field, ul_class='', **kwargs):
 kwargs.setdefault('type', 'checkbox')
 field_id = kwargs.pop('id', field.id)
 html = ['<ul %s>' % html_params(id=field_id, class_=ul_class)]
 for value, label, checked, render_kw in field.iter_choices():
 choice_id = '%s-%s' % (field_id, value)
 options = dict(kwargs, name=field.name, value=value, id=choice_id)
 if checked:
 options['checked'] = 'checked'
 html.append('<input %s /> ' % html_params(**options))
 html.append('<label for="%s">%s</label>' % (choice_id, label))
 html.append('')
 return ''.join(html)

class TestForm(Form):
 tester = SelectMultipleField(choices=my_choices, widget=select_multi_checkbox)

class Meta

the class Meta paradigm allows WTForms features to be customized, and even
new behaviors to be introduced. It also supplies a place where configuration
for any complementary modules can be done.

Typical usage looks something like:

class MyForm(Form):
 class Meta:
 csrf = True
 locales = ('en_US', 'en')

 name = StringField(...)
 # and so on...

For the majority of users, using a class Meta is mostly going to be done for
customizing options used by the default behaviors, however for completeness
the entire API of the Meta interface is shown here.

	
class wtforms.meta.DefaultMeta

	This is the default Meta class which defines all the default values and
therefore also the ‘API’ of the class Meta interface.

Configuration

	
csrf = False

	Setting csrf to True will enable CSRF for the form. The value can
also be overridden per-instance via instantiation-time customization
(for example, if csrf needs to be turned off only in a special case)

form = MyForm(request.form, meta={'csrf': False})

	
csrf_class = None

	If set, this is a class which is used to implement CSRF protection.
Read the CSRF Documentation to get more information on
how to use.

	
csrf_field_name = 'csrf_token'

	The name of the automatically added CSRF token field.

	
locales = False

	Setting to a sequence of strings specifies the priority order
of locales to try to find translations for built-in messages of
WTForms.

If the value is False, then strings are not translated
(the translations provider is replaced with a dummy provider)

example:

locales = ('fr_FR', 'fr')

Also see Internationalization (i18n) for more information.

	
cache_translations = True

	If True (the default) then cache translation objects. The default
cache is done at class-level so it’s shared with all class Meta.

Advanced Customization

Usually, you do not need to override these methods, as they provide core
behaviors of WTForms.

	
build_csrf(form)

	Build a CSRF implementation. This is called once per form instance.

The default implementation builds the class referenced to by
csrf_class with zero arguments. If csrf_class is None,
will instead use the default implementation
wtforms.csrf.session.SessionCSRF.

	Parameters:

	form – The form.

	Returns:

	A CSRF implementation.

	
get_translations(form)

	Override in subclasses to provide alternate translations factory.
See the i18n documentation for more.

	Parameters:

	form – The form.

	Returns:

	An object that provides gettext() and ngettext() methods.

	
bind_field(form, unbound_field, options)

	bind_field allows potential customization of how fields are bound.

The default implementation simply passes the options to
UnboundField.bind().

	Parameters:

	
	form – The form.

	unbound_field – The unbound field.

	options – A dictionary of options which are typically passed to the field.

	Returns:

	A bound field

	
wrap_formdata(form, formdata)

	wrap_formdata allows doing custom wrappers of WTForms formdata.

The default implementation detects webob-style multidicts and wraps
them, otherwise passes formdata back un-changed.

	Parameters:

	
	form – The form.

	formdata – Form data.

	Returns:

	A form-input wrapper compatible with WTForms.

	
render_field(field, render_kw)

	render_field allows customization of how widget rendering is done.

The default implementation calls field.widget(field, **render_kw)

CSRF Protection

The CSRF package includes tools that help you implement checking against
cross-site request forgery (“csrf”). Due to the large number of variations on
approaches people take to CSRF (and the fact that many make compromises) the
base implementation allows you to plug in a number of CSRF validation
approaches.

CSRF implementations are made by subclassing
CSRF. For utility, we have provided one
possible CSRF implementation in the package that can be used with many
frameworks for session-based hash secure keying,
SessionCSRF.

Using CSRF

CSRF in WTForms 2.0 is now driven through a number of variables on
class Meta. After choosing a CSRF implementation,
import it and configure it on the class Meta of a subclass of Form
like such:

from somemodule import SomeCSRF

class MyBaseForm(Form):
 class Meta:
 csrf = True # Enable CSRF
 csrf_class = SomeCSRF # Set the CSRF implementation
 csrf_secret = b'foobar' # Some implementations need a secret key.
 # Any other CSRF settings here.

And once you’ve got this set up, you can define your forms as a subclass
of MyBaseForm:

class UserForm(MyBaseForm):
 name = StringField()
 age = IntegerField()

def view():
 form = UserForm(request.POST)
 if request.POST and form.validate():
 pass # Form is valid and CSRF succeeded

 return render('user.html', form=form)

There is a special field inside the CSRF form (called csrf_token by
default) which you need to make sure you render in your template:

<form action="/user" method="POST">
{{ form.csrf_token }}
{% if form.csrf_token.errors %}
 <div class="warning">You have submitted an invalid CSRF token</div>
{% endif %}
<div>{{ form.name }} {{ form.name.label }}</div>
<div>{{ form.age }}{{ form.age.label }}</div>

Remember, with the class Meta you can always override variables in a sub-class
or at the constructor for special-cases:

class SearchForm(MyBaseForm):
 """
 We expect search queries to come externally, thus we don't want CSRF
 even though it's set up on the base form.
 """
 class Meta:
 # This overrides the value from the base form.
 csrf = False

How WTForms CSRF works

Most CSRF implementations hinge around creating a special token, which is put in
a hidden field on the form named csrf_token, which must be rendered in your
template to be passed from the browser back to your view. There are many
different methods of generating this token, but they are usually the result of
a cryptographic hash function against some data which would be hard to forge.

	
class wtforms.csrf.core.CSRFTokenField(*args, **kwargs)

	A subclass of HiddenField designed for sending the CSRF token that is used
for most CSRF protection schemes.

Notably different from a normal field, this field always renders the
current token regardless of the submitted value, and also will not be
populated over to object data via populate_obj

	
__init__(*args, **kw)

	Construct a new field.

	Parameters:

	
	label – The label of the field.

	validators – A sequence of validators to call when validate is called.

	filters – A sequence of callable which are run by process()
to filter or transform the input data. For example
StringForm(filters=[str.strip, str.upper]).
Note that filters are applied after processing the default and
incoming data, but before validation.

	description – A description for the field, typically used for help text.

	id – An id to use for the field. A reasonable default is set by the form,
and you shouldn’t need to set this manually.

	default – The default value to assign to the field, if no form or object
input is provided. May be a callable.

	widget – If provided, overrides the widget used to render the field.

	render_kw (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – If provided, a dictionary which provides default keywords that
will be given to the widget at render time.

	name – The HTML name of this field. The default value is the Python
attribute name.

	_form – The form holding this field. It is passed by the form itself during
construction. You should never pass this value yourself.

	_prefix – The prefix to prepend to the form name of this field, passed by
the enclosing form during construction.

	_translations – A translations object providing message translations. Usually
passed by the enclosing form during construction. See
I18n docs for information on message translations.

	_meta – If provided, this is the ‘meta’ instance from the form. You usually
don’t pass this yourself.

If _form isn’t provided, an UnboundField will be
returned instead. Call its bind() method with a form instance and
a name to construct the field.

	
current_token = None

	

	
_value()

	We want to always return the current token on render, regardless of
whether a good or bad token was passed.

	
populate_obj(*args)

	Don’t populate objects with the CSRF token

	
pre_validate(form)

	Handle validation of this token field.

	
process(*args, **kwargs)

	Process incoming data, calling process_data, process_formdata as needed,
and run filters.

If data is not provided, process_data will be called on the field’s
default.

Field subclasses usually won’t override this, instead overriding the
process_formdata and process_data methods. Only override this for
special advanced processing, such as when a field encapsulates many
inputs.

	Parameters:

	extra_filters – A sequence of extra filters to run.

	
class wtforms.csrf.core.CSRF

	
	
setup_form(form)

	Receive the form we’re attached to and set up fields.

The default implementation creates a single field of
type field_class with name taken from the
csrf_field_name of the class meta.

	Parameters:

	form – The form instance we’re attaching to.

	Returns:

	A sequence of (field_name, unbound_field) 2-tuples which
are unbound fields to be added to the form.

	
generate_csrf_token(csrf_token_field)

	Implementations must override this to provide a method with which one
can get a CSRF token for this form.

A CSRF token is usually a string that is generated deterministically
based on some sort of user data, though it can be anything which you
can validate on a subsequent request.

	Parameters:

	csrf_token_field – The field which is being used for CSRF.

	Returns:

	A generated CSRF string.

	
validate_csrf_token(form, field)

	Override this method to provide custom CSRF validation logic.

The default CSRF validation logic simply checks if the recently
generated token equals the one we received as formdata.

	Parameters:

	
	form – The form which has this CSRF token.

	field – The CSRF token field.

	
field_class = <class 'wtforms.csrf.core.CSRFTokenField'>

	The class of the token field we’re going to construct. Can be
overridden in subclasses if need be.

Creating your own CSRF implementation

Here we will sketch out a simple theoretical CSRF implementation which
generates a hash token based on the user’s IP.

Note This is a simplistic example meant to illustrate creating a CSRF
implementation. This isn’t recommended to be used in production because the
token is deterministic and non-changing per-IP, which means this isn’t the
most secure implementation of CSRF.

First, let’s create our CSRF class:

from wtforms.csrf.core import CSRF
from hashlib import md5

SECRET_KEY = '1234567890'

class IPAddressCSRF(CSRF):
 """
 Generate a CSRF token based on the user's IP. I am probably not very
 secure, so don't use me.
 """
 def setup_form(self, form):
 self.csrf_context = form.meta.csrf_context
 return super(IPAddressCSRF, self).setup_form(form)

 def generate_csrf_token(self, csrf_token):
 token = md5(SECRET_KEY + self.csrf_context).hexdigest()
 return token

 def validate_csrf_token(self, form, field):
 if field.data != field.current_token:
 raise ValueError('Invalid CSRF')

Now that we have this taken care of, let’s write a simple form and view which would implement this:

class RegistrationForm(Form):
 class Meta:
 csrf = True
 csrf_class = IPAddressCSRF

 name = StringField('Your Name')
 email = StringField('Email', [validators.email()])

def register(request):
 form = RegistrationForm(
 request.POST,
 meta={'csrf_context': request.ip}
)

 if request.method == 'POST' and form.validate():
 pass # We're all good, create a user or whatever it is you do
 elif form.csrf_token.errors:
 pass # If we're here we suspect the user of cross-site request forgery
 else:
 pass # Any other errors

 return render('register.html', form=form)

And finally, a simple template:

<form action="register" method="POST">
 {{ form.csrf_token }}
 <p>{{ form.name.label }}: {{ form.name }}</p>
 <p>{{ form.email.label }}: {{ form.email }}</p>
 <input type="submit" value="Register">
</form>

Please note that implementing CSRF detection is not fool-proof, and even with
the best CSRF protection implementation, it’s possible for requests to be
forged by expert attackers. However, a good CSRF protection would make it
infeasible for someone from an external site to hijack a form submission from
another user and perform actions as them without additional a priori knowledge.

In addition, it’s important to understand that very often, the more strict the
CSRF protection, the higher the chance of false positives occurring (ie,
legitimate users getting blocked by your CSRF protection) and choosing a CSRF
implementation is actually a matter of compromise. We will attempt to provide a
handful of usable reference algorithms built in to this library in the future, to
allow that choice to be easy.

Some tips on criteria people often examine when evaluating CSRF implementations:

	Reproducability If a token is based on attributes about the user, it
gains the advantage that one does not need secondary storage in which to
store the value between requests. However, if the same attributes can be
reproduced by an attacker, then the attacker can potentially forge this
information.

	Reusability. It might be desired to make a completely different token
every use, and disallow users from re-using past tokens. This is an
extremely powerful protection, but can have consequences on if the user uses
the back button (or in some cases runs forms simultaneously in multiple
browser tabs) and submits an old token, or otherwise. A possible compromise
is to allow reusability in a time window (more on that later).

	Time Ranges Many CSRF approaches use time-based expiry to make sure that
a token cannot be (re)used beyond a certain point. Care must be taken in
choosing the time criteria for this to not lock out legitimate users. For
example, if a user might walk away while filling out a long-ish form, or to
go look for their credit card, the time for expiry should take that into
consideration to provide a balance between security and limiting user
inconvenience.

	Requirements Some CSRF-prevention methods require the use of browser
cookies, and some even require client-side scripting support. The webmaster
implementing the CSRF needs to consider that such requirements (though
effective) may lock certain legitimate users out, and make this
determination whether it is a good idea to use. For example, for a site
already using cookies for login, adding another for CSRF isn’t as big of a
deal, but for other sites it may not be feasible.

Session-based CSRF implementation

A provided CSRF implementation which puts CSRF data in a session.

This can be used fairly comfortably with many request.session type
objects, including the Werkzeug/Flask session store, Django sessions, and
potentially other similar objects which use a dict-like API for storing
session keys.

The basic concept is a randomly generated value is stored in the user’s
session, and an hmac-sha1 of it (along with an optional expiration time,
for extra security) is used as the value of the csrf_token. If this token
validates with the hmac of the random value + expiration time, and the
expiration time is not passed, the CSRF validation will pass.

	
class wtforms.csrf.session.SessionCSRF

	Meta Values

	csrf_secret A byte string which is the master key by which we encode
all values. Set to a sufficiently long string of characters that is
difficult to guess or bruteforce (recommended at least 16 characters)
for example the output of os.urandom(16).

	csrf_time_limit if None, tokens last forever (not recommended.)
Otherwise, set to a datetime.timedelta that will define how long
CSRF tokens are valid for. Defaults to 30 minutes.

	csrf_context This should be a request.session-style object.
Usually given in the Form constructor.

Example

from wtforms.csrf.session import SessionCSRF
from datetime import timedelta

class MyBaseForm(Form):
 class Meta:
 csrf = True
 csrf_class = SessionCSRF
 csrf_secret = b'EPj00jpfj8Gx1SjnyLxwBBSQfnQ9DJYe0Ym'
 csrf_time_limit = timedelta(minutes=20)

class Registration(MyBaseForm):
 name = StringField()

def view(request):
 form = Registration(request.POST, meta={'csrf_context': request.session})
 # rest of view here

Note that request.session is passed as the csrf_context override to the
meta info, this is so that the CSRF token can be stored in your session for
comparison on a later request.

Example Integration

WTForms primitives are designed to work with a large variety of frameworks, and
as such sometimes things seem like they are more work to use, but with some
smart integration, you can actually clean up your code substantially.

For example, if you were going to integrate with Flask [https://flask.palletsprojects.com/], and wanted to use
the SessionCSRF implementation, here’s one way to get the CSRF context to be
available without passing it all the time:

from flask import session
from wtforms.csrf.session import SessionCSRF

class MyBaseForm(Form):
 class Meta:
 csrf = True
 csrf_class = SessionCSRF
 csrf_secret = app.config['CSRF_SECRET_KEY']

 @property
 def csrf_context(self):
 return session

Now with any subclasses of MyBaseForm, you don’t need to pass in the csrf
context, and on top of that, we grab the secret key out of your normal app
configuration.

Internationalization (i18n)

Localizing strings in WTForms is a topic that frequently comes up.
In WTForms, the majority of messages that are transmitted are
provided by you, the user. However, there is support for translating some of
the built-in messages in WTForms (such as errors which occur during data
coercion) so that the user can make sure the user experience is consistent.

Translating user-provided messages

This is not actually any specific feature in WTForms, but because the question
is asked so frequently, we need to address it here: WTForms does -not-
translate any user-provided strings.

This is not to say they can’t be translated, but that it’s up to you to deal
with providing a translation for any passed-in messages. WTForms waits until
the last moment (usually validation time) before doing anything with the passed
in message (such as interpolating strings) thus giving you the opportunity to
e.g. change your locale before validation occurs, if you are using a suitable
“lazy proxy”.

Here’s a simple example of how one would provide translated strings to WTForms:

from somelibrary import ugettext_lazy as _
from wtforms import Form, StringField, IntegerField, validators as v

class RegistrationForm(Form):
 name = StringField(_('Name'), [v.InputRequired(_('Please provide your name'))])
 age = IntegerField(
 _('Age'),
 [v.NumberRange(min=12, message=_('Must be at least %(min)d years old.'))]
)

The field label is left un-perturbed until rendering time in a template, so you
can easily provide translations for field labels if so desired. In addition,
validator messages with format strings are not interpolated until the
validation is run, so you can provide localization there as well.

Translating built-in messages

There are some messages in WTForms which are provided by the framework, namely
default validator messages and errors occurring during the processing (data
coercion) stage. For example, in the case of the IntegerField above, if someone
entered a value which was not valid as an integer, then a message like “Not a
valid integer value” would be displayed.

Using the built-in translations provider

WTForms now includes a basic translations provider which uses the stdlib
gettext module to localize strings based on locale information distributed
with the package. Localizations for several languages are included, and we
hope that soon there will be more submitted.

To use the builtin translations provider, simply pass locale languages as
locales in the meta section of the
constructor of your form:

form = MyForm(request.form, meta={'locales': ['en_US', 'en']})

Alternately, if you are localizing application-wide you can define locales
at meta-level in a subclass of Form:

class MyBaseForm(Form):
 class Meta:
 locales = ['es_ES', 'es']

Now simply have all your forms be a subclass of MyBaseForm and you will have
all your default messages output in spanish.

Writing your own translations provider

For this case, we provide the ability to give a translations object on a
subclass of Form, which will then be called to translate built-in strings.

An example of writing a simple translations object:

from mylibrary import ugettext, ungettext
from wtforms import Form

class MyTranslations(object):
 def gettext(self, string):
 return ugettext(string)

 def ngettext(self, singular, plural, n):
 return ungettext(singular, plural, n)

class MyBaseForm(Form):
 class Meta:
 def get_translations(self, form):
 return MyTranslations()

You would then use this new base Form class as the base class for any forms you
create, and any built-in messages from WTForms will be passed to your
gettext/ngettext implementations.

You control the object’s constructor, its lifecycle, and everything else about
it, so you could, for example, pass the locale per-form instantiation to the
translation object’s constructor, and anything else you need to do for
translations to work for you.

Changes

Version 3.1.2

Released 2024-01-06

	Fix SelectMultipleField value coercion on validation.
#822 [https://github.com/wtforms/wtforms/issues/822] #823 [https://github.com/wtforms/wtforms/pull/823]

Version 3.1.1

Released 2023-11-01

	Display Flags values in their repr. #808 [https://github.com/wtforms/wtforms/pull/808]

	SelectField and SelectMultipleField
choices can be None if validate_choice is False #809 [https://github.com/wtforms/wtforms/pull/809]

	Documentation improvements #812 [https://github.com/wtforms/wtforms/pull/812] #815 [https://github.com/wtforms/wtforms/pull/815] #817 [https://github.com/wtforms/wtforms/pull/817]

	Unit tests improvements #813 [https://github.com/wtforms/wtforms/pull/813]

	Python 3.12 support #818 [https://github.com/wtforms/wtforms/pull/818]

	Restored support for 3-items tuple return value from iter_choices
#816 [https://github.com/wtforms/wtforms/pull/816]

Version 3.1.0

Released 2023-10-10

	Documentation improvements #726 [https://github.com/wtforms/wtforms/pull/726] #733 [https://github.com/wtforms/wtforms/pull/733] #749 [https://github.com/wtforms/wtforms/pull/749]
#767 [https://github.com/wtforms/wtforms/pull/767] #788 [https://github.com/wtforms/wtforms/pull/788] #789 [https://github.com/wtforms/wtforms/pull/789] #793 [https://github.com/wtforms/wtforms/pull/793]

	Translation improvements #732 [https://github.com/wtforms/wtforms/pull/732] #734 [https://github.com/wtforms/wtforms/pull/734] #754 [https://github.com/wtforms/wtforms/pull/754]

	Implement ColorField #755 [https://github.com/wtforms/wtforms/pull/755]

	Delayed import of email_validator. #727 [https://github.com/wtforms/wtforms/issues/727]

	<option> attributes can be passed by the SelectField
choices parameter #692 [https://github.com/wtforms/wtforms/issues/692] #739 [https://github.com/wtforms/wtforms/pull/739].
⚠️breaking change⚠️: iter_choices now returns a tuple of 4 items

	Use the standard datetime formats by default for
DateTimeLocalField #761 [https://github.com/wtforms/wtforms/pull/761]

	Python 3.11 support #763 [https://github.com/wtforms/wtforms/pull/763]

	Added shorter format to DateTimeLocalField
defaults #761 [https://github.com/wtforms/wtforms/pull/761]

	Stop support for python 3.7 #794 [https://github.com/wtforms/wtforms/pull/794]

	Added shorter format to WeekField
defaults #765 [https://github.com/wtforms/wtforms/pull/765]

	Move to pyproject.toml #796 [https://github.com/wtforms/wtforms/pull/796]

	URL validator takes a allow_ip parameter #800 [https://github.com/wtforms/wtforms/pull/800]

	Implement ReadOnly and
Disabled :pr:`788

Version 3.0.1

Released 2021-12-23

	Fixed DateTimeField and other similar fields can
handle multiple formats. #720 [https://github.com/wtforms/wtforms/issues/720] #721 [https://github.com/wtforms/wtforms/pull/721]

	Stop support for python 3.6 #722 [https://github.com/wtforms/wtforms/pull/722]

Version 3.0.0

Released 2021-11-07

	Fixed RadioField validators. #477 [https://github.com/wtforms/wtforms/issues/477] #615 [https://github.com/wtforms/wtforms/pull/615]

	populate_obj() always calls setattr() [https://docs.python.org/3/library/functions.html#setattr]
#675 [https://github.com/wtforms/wtforms/pull/675]

	WTForms has a new logo. #569 [https://github.com/wtforms/wtforms/issues/569] #689 [https://github.com/wtforms/wtforms/pull/689]

	Fixed RadioField render_kw rendering. #490 [https://github.com/wtforms/wtforms/issues/490]
#628 [https://github.com/wtforms/wtforms/pull/628] #688 [https://github.com/wtforms/wtforms/pull/688]

	Support for optgroups in SelectField and
SelectMultipleField. #656 [https://github.com/wtforms/wtforms/issues/656] #667 [https://github.com/wtforms/wtforms/pull/667]

	Minor documentation fix. #701 [https://github.com/wtforms/wtforms/issues/701]

	Custom separators for FieldList. #681 [https://github.com/wtforms/wtforms/issues/681] #694 [https://github.com/wtforms/wtforms/pull/694]

	DateTimeField, DateField and
TimeField support time formats that removes leading
zeros. #703 [https://github.com/wtforms/wtforms/pull/703]

	Refactoring: split fields/core.py and fields/simple.py #710 [https://github.com/wtforms/wtforms/pull/710]

Version 3.0.0a1

Released 2020-11-23

	Drop support for Python < 3.6. #554 [https://github.com/wtforms/wtforms/pull/554]

	StringField sets data to None when form
data is empty and an initial value was not provided. Although it
previously set an empty string, None is consistent with the
behavior of other fields. #355 [https://github.com/wtforms/wtforms/pull/355]

	Specified version of Babel required for setup to avoid errors.
#430 [https://github.com/wtforms/wtforms/pull/430]

	Replaced use of getattr/setattr with regular variable
access. #482 [https://github.com/wtforms/wtforms/issues/482]

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] raised by a validator are handled like regular
exceptions. Validators need to raise
ValidationError or
StopValidation to make a validation fail.
#445 [https://github.com/wtforms/wtforms/issues/445]

	SelectField, SelectMultipleField and
RadioField choices parameter can be a callable.
#608 [https://github.com/wtforms/wtforms/pull/608]

	Choices shortcut for SelectMultipleField.
#603 [https://github.com/wtforms/wtforms/issues/603] #605 [https://github.com/wtforms/wtforms/pull/605]

	Forms can have form-level errors. #55 [https://github.com/wtforms/wtforms/issues/55] #595 [https://github.com/wtforms/wtforms/pull/595]

	Implemented MonthField. #530 [https://github.com/wtforms/wtforms/pull/530] #593 [https://github.com/wtforms/wtforms/pull/593]

	Filters can be inline. form.BaseForm.process() takes a
extra_filters parameter. #128 [https://github.com/wtforms/wtforms/issues/128] #592 [https://github.com/wtforms/wtforms/pull/592]

	Fields can be passed the name argument to use a HTML name
different than their Python name. #205 [https://github.com/wtforms/wtforms/issues/205], #601 [https://github.com/wtforms/wtforms/pull/601]

	Render attribute names like for_ and class_ are normalized
consistently so later values override those specified earlier.
#449 [https://github.com/wtforms/wtforms/issues/449], #596 [https://github.com/wtforms/wtforms/pull/596]

	Flags should now be stored in dicts and can take non-boolean values.
A DeprecationWarning is issued when tuples are used. #406 [https://github.com/wtforms/wtforms/issues/406] #467 [https://github.com/wtforms/wtforms/pull/467]

	Widgets are HTML5 by default. #594 [https://github.com/wtforms/wtforms/issues/594] #614 [https://github.com/wtforms/wtforms/pull/614]

	Fixed a bug when the SelectField choices
are list of strings. #598 [https://github.com/wtforms/wtforms/pull/598]

	Error messages standardization. #613 [https://github.com/wtforms/wtforms/issues/613] #620 [https://github.com/wtforms/wtforms/pull/620] #626 [https://github.com/wtforms/wtforms/pull/626] #627 [https://github.com/wtforms/wtforms/pull/627]

	SelectMultipleField validate_choice
bugfix. #606 [https://github.com/wtforms/wtforms/issues/606] #642 [https://github.com/wtforms/wtforms/pull/642]

	Fixed SelectMultipleField validation when using choices list shortcut.
#612 [https://github.com/wtforms/wtforms/issues/612] #661 [https://github.com/wtforms/wtforms/pull/661]

	Removed form._get_translations(). Use
Meta.get_translations instead.

Version 2.3.3

Released 2020-07-30

	This release includes the translation files that were missing in the
2.3.2 release. #641 [https://github.com/wtforms/wtforms/issues/641]

Version 2.3.2

Released 2020-07-29

	Fixed a bug with SelectField choices shortcut at
form submission. #598 [https://github.com/wtforms/wtforms/pull/598], #639 [https://github.com/wtforms/wtforms/pull/639]

Version 2.3.1

Released 2020-04-22

	All modules in wtforms.ext show a deprecation warning on import.
They will be removed in version 3.0.

	Fixed a bug when SelectField choices is None.
#572 [https://github.com/wtforms/wtforms/issues/572], #585 [https://github.com/wtforms/wtforms/issues/585]

	Restored HTMLString and escape_html as aliases for
MarkupSafe functions. Their use shows a DeprecationWarning.
#581 [https://github.com/wtforms/wtforms/issues/581], #583 [https://github.com/wtforms/wtforms/pull/583]

	Form.validate takes an extra_validators parameter, mapping
field names to lists of extra validator functions. This matches
BaseForm.validate. #584 [https://github.com/wtforms/wtforms/pull/584]

	Update locale catalogs.

Version 2.3.0

Released 2020-04-21

	Drop support for Python 2.6, 3.3, and 3.4.

	SelectField uses list() to construct a new list
of choices. #475 [https://github.com/wtforms/wtforms/pull/475]

	Permitted underscores in HostnameValidation. #463 [https://github.com/wtforms/wtforms/pull/463]

	URL validator now allows query parameters in
the URL. #523 [https://github.com/wtforms/wtforms/issues/523], #524 [https://github.com/wtforms/wtforms/pull/524]

	Updated false_values param in BooleanField docs.
#483 [https://github.com/wtforms/wtforms/issues/483], #485 [https://github.com/wtforms/wtforms/pull/485]

	Fixed broken format string in Arabic translation #471 [https://github.com/wtforms/wtforms/pull/471]

	Updated French and Japanese translations. #506 [https://github.com/wtforms/wtforms/pull/506], #514 [https://github.com/wtforms/wtforms/pull/514]

	Updated Ukrainian translation. #433 [https://github.com/wtforms/wtforms/pull/433]

	FieldList error list keeps entries in order for easier
identification of which fields had errors. #257 [https://github.com/wtforms/wtforms/issues/257], #407 [https://github.com/wtforms/wtforms/pull/407]

	Length gives a more helpful error message when
min and max are the same value. #266 [https://github.com/wtforms/wtforms/pull/266]

	SelectField no longer coerces None to
"None" allowing use of "None" as an option. #289 [https://github.com/wtforms/wtforms/issues/289],
#288 [https://github.com/wtforms/wtforms/pull/288]

	The TextArea widget prepends a \r\n newline
when rendering to account for browsers stripping an initial line for
display. This does not affect the value. #238 [https://github.com/wtforms/wtforms/issues/238], #395 [https://github.com/wtforms/wtforms/pull/395]

	HTML5 IntegerField and
RangeInput don’t render the step="1"
attribute by default. #343 [https://github.com/wtforms/wtforms/pull/343]

	aria_ args are rendered the same way as data_ args, by
converting underscores to hyphens. aria_describedby="name-help"
becomes aria-describedby="name-help". #239 [https://github.com/wtforms/wtforms/issues/239], #389 [https://github.com/wtforms/wtforms/pull/389]

	Added a check_validators method to Field which
checks if the given validators are both callable, and not classes.
#298 [https://github.com/wtforms/wtforms/pull/298], #410 [https://github.com/wtforms/wtforms/pull/410]

	form.errors is not cached and will update if an error is
appended to a field after access. #568 [https://github.com/wtforms/wtforms/pull/568]

	NumberRange correctly handle NaN
values. #505 [https://github.com/wtforms/wtforms/issues/505], #548 [https://github.com/wtforms/wtforms/pull/548]

	IntegerField checks input type when processing
data. #451 [https://github.com/wtforms/wtforms/pull/451]

	Added a parameter to SelectField to skip choice
validation. #434 [https://github.com/wtforms/wtforms/issues/434], #493 [https://github.com/wtforms/wtforms/pull/493]

	Choices which name and data are the same do not need to use tuples.
#526 [https://github.com/wtforms/wtforms/pull/526]

	Added more documentation on HTML5 fields. #326 [https://github.com/wtforms/wtforms/pull/326], #409 [https://github.com/wtforms/wtforms/pull/409]

	HTML is escaped using MarkupSafe instead of the previous internal
implementation. escape_html() is removed,
replaced by markupsafe.escape().
HTMLString is removed, replaced by
markupsafe.Markup. #400 [https://github.com/wtforms/wtforms/pull/400]

	Fixed broken IPv6 validator, validation now uses the ipaddress
package. #385 [https://github.com/wtforms/wtforms/issues/385], #403 [https://github.com/wtforms/wtforms/pull/403]

	Label text is escaped before rendering.
#315 [https://github.com/wtforms/wtforms/issues/315], #375 [https://github.com/wtforms/wtforms/pull/375]

	Email validation is now handled by an optional library,
email_validator. #429 [https://github.com/wtforms/wtforms/pull/429]

Version 2.2.1

Released 2018-06-07

	StringField only sets data = '' when form data
is empty and an initial value was not provided. This fixes an issue
where the default value wasn’t rendered with the initial form.
#291 [https://github.com/wtforms/wtforms/issues/291], #401 [https://github.com/wtforms/wtforms/issues/401], #355 [https://github.com/wtforms/wtforms/pull/355]

Version 2.2

Released 2018-06-02

	Merged new and updated translations from the community.

	Passing data_ args to render a field converts all the
underscores to hyphens when rendering the HTML attribute, not just
the first one. data_foo_bar becomes data-foo-bar. #248 [https://github.com/wtforms/wtforms/pull/248]

	The UUID validator uses the uuid.UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID]
class instead of a regex. #251 [https://github.com/wtforms/wtforms/pull/251]

	SelectField copies the list of choices passed
to it so modifying an instance’s choices will not modify the global
form definition. #286 [https://github.com/wtforms/wtforms/pull/286]

	Fields call process_formdata() even if the raw
data is empty. #280 [https://github.com/wtforms/wtforms/pull/280]

	Added a MultipleFileField to handle a multi-file
input. FileField continues to handle only one
value. The underlying FileInput widget gained a
multiple argument. #281 [https://github.com/wtforms/wtforms/pull/281]

	SelectField choices can contain HTML (MarkupSafe
Markup object or equivalent API) and will be rendered properly.
#302 [https://github.com/wtforms/wtforms/pull/302]

	fields.TimeField and html5.TimeField were added. #254 [https://github.com/wtforms/wtforms/pull/254]

	Improved Email. Note that it is still
unreasonable to validate all emails with a regex and you should
prefer validating by actually sending an email. #294 [https://github.com/wtforms/wtforms/pull/294]

	Widgets render the required attribute when using a validator
that provides the 'required' flag, such as
DataRequired. #361 [https://github.com/wtforms/wtforms/pull/361]

	Fix a compatibility issue with SQLAlchemy 1.2 that caused
QuerySelectField to fail with
ValueError: too many values to unpack. #391 [https://github.com/wtforms/wtforms/pull/391]

Version 2.1

Released 2015-12-15

	Added render_kw to allow default rendering time options.

	Updated / added a number of localizations.

	Updated docs.

	Allow widgets to set flags.

Version 2.0.2

Released 2015-01-18

	Added more localizations and updated some.

	Validators for email and URL can validate IDNA-encoded domain names
and new TLDs.

	Better DeprecationWarnings.

	Support localization files in /usr/share/locale for distro
packaging.

Version 2.0.1

Released 2014-07-01

	Update wheel install to conditionally install ordereddict for Python
2.6.

	Doc improvements.

Version 2.0

Released 2014-05-20

	Add new class Meta paradigm for much more powerful customization
of WTForms.

	Move i18n into core. Deprecate wtforms.ext.i18n.

	Move CSRF into core. Deprecate wtforms.ext.csrf.

	Fix issue rendering SelectFields with value=True.

	Make DecimalField able to use babel locale-based number
formatting.

	Drop Python 3.2 support (Python3 support for 3.3+ only).

	Passing attr=False to WTForms widgets causes the value to be
ignored.

	Unique validator in wtforms.ext.sqlalchemy has been removed.

	Deprecate form._get_translations. Use Meta.get_translations instead.

Version 1.0.5

Released 2013-09-10

	Fix a bug in validators which causes translations to happen once
then clobber any future translations.

	ext.sqlalchemy and ext.appengine minor cleanups /
deprecation.

	Allow blank string and the string false to be considered false
values for BooleanField (configurable). This is technically a
breaking change, but it is not likely to affect the majority of
users adversely.

	ext.i18n form allows passing LANGUAGES to the constructor.

Version 1.0.4

Released 2013-04-28

	Add widgets and field implementations for HTML5 specialty input
types.

	ext.appengine add NDB support.

	Add translations for Korean, Traditional Chinese.

Version 1.0.3

Released 2013-01-24

	Tests complete in python 3.2/3.3.

	Localization for ru, fr.

	Minor fixes in documentation for clarity.

	FieldList now can take validators on the entire FieldList.

	Fix issue with ext.sqlalchemy QuerySelectField.

	Fix issue in ext.sqlalchemy ColumnDefault conversion.

	ext.sqlalchemy supports Enum type.

	Field class now allows traversal in Django 1.4 templates.

Version 1.0.2

Released 2012-08-24

	We now support Python 2.x and 3.x on the same codebase, thanks to a
lot of hard work by Vinay Sajip.

	Add in ability to convert relationships to ext.sqlalchemy
model_form.

	Built-in localizations for more languages.

	Distinguish Required validator into InputRequired and
DataRequired.

	Better IP address validation, including IPv6 support.

	AnyOf / NoneOf now work properly formatting other datatypes
than strings.

	Optional validator can optionally pass through whitespace.

Version 1.0.1

Released 2012-02-29

	Fixed issues related to building for Python 3 and Python
pre-releases.

	Add object_data to fields to get at the originally passed data.

Version 1.0

Released 2012-02-28

	Output HTML5 compact syntax by default.

	Substantial code reorg, cleanup, and test improvements.

	Added ext.csrf for a way to implement CSRF protection.

	ext.sqlalchemy supports PGInet, MACADDR, and UUID
field conversion.

	ext.sqlalchemy supports callable defaults.

	ext.appengine model_form now supports generating forms with
the same ordering as model.

	ext.appengine ReferencePropertyField now gets get_label
like the other ORM fields.

	Add localization support for WTForms built-in messages.

	Python 3 support (via 2to3).

	An empty label string can be specified on fields if desired.

	Option widget can now take kwargs customization.

	Field subclasses can provide default validators as a class property.

	DateTimeField can take time in microseconds.

	Numeric fields all set .data to None on coercion error for
consistency.

Version 0.6.3

Released 2011-04-24

	Documentation: Substantial documentation improvements, including
adding Crash Course as a Sphinx document.

	ext.django QuerySetSelectField and ModelSelectField now
accept get_label similar to sqlalchemy equivalents.

	ext.appengine model_form fixes for FloatField,
TimeField, and DateTimeField.

	ext.appengine ReferencePropertyField now properly stores
model object, not key.

Version 0.6.2

Released 2011-01-22

	ext.appengine various field fixes.

	ext.appengine model_form changes.

	Fix issue in Optional with non-string input.

	Make numeric fields more consistent.

	Improve test coverage substantially.

Version 0.6.1

Released 2010-09-17

	ext.appengine ReferencePropertyField.

	Dateutil fields render issue, and consistency issue.

	Optional validator failed when raw_data was absent

	Documentation: docs now mention HTML escaping functionality.

	Add preliminary support for providing a translations object that can
translate built-in validation and coercion errors.

Version 0.6

Released 2010-04-25

	HTML is now marked as safe (using __html__) so that compatible
templating engines will not auto-escape it.

	Field._default is now Field.default.

	All fields now have a raw_data property.

	Fields which are select fields (including those in .ext) can be
iterated to produce options, and have an option_widget kwarg.

	Minor bugfixes and cleanup in FieldList,
Select(Multiple)Field, QuerySelectField to address
behavioral consistency.

	Added FloatField, based on IntegerField.

	ext.appengine now supports FloatProperty and
GeoPtProperty.

	ext.sqlalchemy QueryMultipleSelectField changed to
QuerySelectMultipleField.

Version 0.5

Released 2010-02-13

	Added a BaseForm class which provides the core processing and
validation functionality of Form without requiring declarative
subclassing.

	Field labels now default to a humanized field name.

	Fields now have a short_name property which is the un-prefixed
name.

	DecimalField now rounds values for display without float
coercion. See docs for details on how to format decimals.

	ext.sqlalchemy.fields now has an additional
QuerySelectMultipleField, and all fields can now support
multiple-column primary keys.

	ext.sqlalchemy.orm contains tools for making forms from ORM
models.

	Added ext.dateutil for flexible date-time parsing.

	Added ext.appengine contributed by Rodrigo Moraes.

	Added AnyOf and NoneOf validators.

Version 0.4

Released 2009-10-10

	Fields have much greater control over input processing. Filters have
been added to implement a simple way to transform input data.

	Added fields that encapsulate advanced data structures such as
dynamic lists or child forms for more powerful field composing.

	Fields now use widgets for rendering.

	All built-in validators have been converted to classes to clean up
the code.

	Form.auto_populate and Field.populate were renamed to
populate_obj to clarify that they populate another object, not
the Form or Field. This is an API breaking change.

	Dropped support for Python 2.3.

Version 0.3.1

Released 2009-01-24

	Several fixes were made to the code and tests to make WTForms
compatible with Python 2.3/2.4.

	Form’s properties can now be accessed via dictionary-style access
such as form['author']. This also has the intended effect of
making variable lookups in Django templates more reliable.

	Form and Field construction changes: Form now uses a metaclass to
handle creating its _unbound_fields property, and Field
construction now gives an instance of the new UnboundField class
instead of using a partial function application. These are both
internal changes and do not change the API.

Version 0.3

Released 2009-01-18

	Fields are now responsible for their own validation, instead of
mostly relying on Form. There are also new pre_validate and
post_validate hooks on subfields, adding a great deal of
flexibility when dealing with field-level validation. Note that this
is an API breaking change if you have any subfields that override
Field.validate. These will need to be updated to use the new
hooks.

	process_data no longer accepts the has_formdata parameter.

	At form instantiation time, process_data will be called only
once for each field. If a model object is provided which contains
the property, then this value is used. Otherwise, a keyword argument
if specified is used. Failing that, the field’s default value is
used.

	If any form data is sent, process_formdata will be called after
process_data for each field. If no form data is available for
the given field, it is called with an empty list.

	wtforms.ext.django has been overhauled, both to mirror features
and changes of the Django 1.0 release, and to add some useful fields
for working with Django ORM data in forms.

	The checker keyword argument to SelectField,
SelectMultipleField, and RadioField has been renamed to
coerce to reflect the actual functionality of this callable.

Version 0.2

Released 2009-01-13

	We have documentation and unit tests!

	Fields now have a flags property which contain boolean flags
that are set either by the field itself or validators being
specified on a field. The flags can then be used in checks in
template or Python code.

	Changed the way fields take parameters, they are no longer quasi
magic. This is a breaking change. Please see the documentation for
the new syntax.

	Added optional description argument to Field, accessible on the
field as description. This provides an easy way to define e.g.
help text in the same place as the form.

	Added new semantics for validators which can stop the validation
chain, with or without errors.

	Added a regexp validator, and removed the not_empty validator in
favour of two validators, optional and required. The new validators
allow control over the validation chain in addition to checking
emptiness.

	Renamed wtforms.contrib to wtforms.ext and reorganised
wtforms.ext.django. This is a breaking change if you were using
the Django extensions, but should only require changing your imports
around a little.

	Better support for other frameworks such as Pylons.

Version 0.1

Released 2008-07-25

	Initial release.

What’s New in WTForms 3

New Features

WTForms 3 is something something TODO

Past Major Releases

WTForms 2

WTForms 2 was the first major version bump since WTForms 1.0. Coming with it
are a number of major changes that allow far more customization of core
WTForms features. This is done to make WTForms even more capable when working
along with companion libraries.

New Features

	Class Meta paradigm allows customization of many aspects of WTForms.

	CSRF and i18n are core features not needing
extensions anymore.

	Widget rendering changes:

	Passing <attribute name>=False to WTForms widget rendering is now
ignored, making it easier to deal with boolean HTML attributes.

	Creating an html attribute data-foo can be done by passing the keyword
data_foo to the widget.

Deprecated API’s

These API’s still work, but in most cases will cause a DeprecationWarning.
The deprecated API’s will be removed in WTForms 3.0, so write code against
the new API’s unless it needs to work across both WTForms 1.x and 2.x

	Core

	Form._get_translations Use
Meta.get_translations
instead.

	The TextField alias for
StringField is deprecated.

	wtforms.validators.Required is now
wtforms.validators.DataRequired

	wtforms.fields._unset_value is now wtforms.utils.unset_value

	WTForms Extensions
All the extensions are being deprecated. We feel like the extensions we had
would actually benefit from being pulled outside the WTForms package,
because it would allow them to have a separate release schedule that suits
their companion libraries.

	wtforms.ext.appengine Is deprecated, see WTForms-Appengine [https://github.com/wtforms/wtforms-appengine]

	wtforms.ext.csrf CSRF protection is now built in

	wtforms.ext.dateutil Is deprecated, but does not have a new home yet.

	wtforms.ext.django Is deprecated. See WTForms-Django [https://github.com/wtforms/wtforms-django]

	wtforms.ext.i18n i18n is now built in

	wtforms.ext.sqlalchemy Is deprecated, look at WTForms-Alchemy [https://pypi.org/project/WTForms-Alchemy/]
(docs [https://wtforms-alchemy.readthedocs.io/])

Low-level Changes

Most of these changes shouldn’t affect the typical library user, however we
are including these changes for completeness for those who are creating
companion libraries to WTForms.

	BaseForm._fields is now an OrderedDict, not a plain dict.

	FormMeta now manages an attribute called
_wtforms_meta which is a subclass of any class Meta defined on
ancestor form classes.

	A new keyword-param called simply data= to the Form constructor has been
added and positioned as the place where soon we will be able to accept
structured data which is neither formdata, object data, or defaults.
Currently this parameter is merged with the kwargs, but the intention is to
handle other structured data (think JSON).

	Filters on fields stop on the first
ValueError, instead of continuing on to the next one.

BSD-3-Clause License

Copyright 2008 WTForms

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contributing to WTForms

WTForms is an open-source library and changing and evolving over time.
To that end, we are supported by the contributions of many people in the
python community.

How to Contribute

WTForms is now on GitHub [https://github.com/wtforms/wtforms], so all contributions should be either associated
with a pull request or with a ticket & patch.

Contribution Guidelines

Code submitted should:

	Be formatted according to the PEP8 [https://www.python.org/dev/peps/pep-0008/] style guideline except that it
does not need to confirm to the 79-column limit requirement of the
guideline.

	Have tests

	Unless it’s a bugfix, it should pass existing tests.

	New classes or methods should mean new unit tests or extending existing
tests.

	Bugfixes can probably do with a regression test too (a test that would
fail without this fix)

	Use naming schemes consistent with WTForms conventions

	Work on all versions of Python that WTForms currently supports. Take
advantage of Github Actions [https://github.com/wtforms/wtforms/actions] for running tests on all supported Python
versions.

Note on API compatibility

WTForms is a very small library, but yet it’s possible to break API
compatibility pretty easily. We are okay with breaking API compatibility
for compelling features or major changes that we feel are worthwhile
inclusions to the WTForms core, but realize that any API compatibility
break will delay the inclusion of your ticket to the next major release.

Some examples of API compatibility breaks include:

	Adding new attributes or methods to the base Form class

	Modifying the number of required arguments of core methods like
process()

	Changing the default behavior of a field.

However, it is still possible to add new features to WTForms without breaking
API compatibility. For example, if one were looking to add Babel locale
support to DecimalField, it could be done so long as by default, DecimalField
behaved the same as it did before. This could look something like:

	Add a keyword arg use_locale to the constructor

	Make the keyword default to False so the behavior without this arg is
identical to the previous behavior.

	Add your functionality and make sure all existing DecimalField tests work
unchanged (and of course add new tests for the new functionality).

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wtforms	

 	
 	
 wtforms.csrf	

 	
 	
 wtforms.csrf.core	

 	
 	
 wtforms.csrf.session	

 	
 	
 wtforms.fields	

 	
 	
 wtforms.form	

 	
 	
 wtforms.meta	

 	
 	
 wtforms.validators	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (wtforms.fields.Field method)

 	__contains__() (wtforms.form.BaseForm method)

 	(wtforms.form.Form method)

 	__delitem__() (wtforms.form.BaseForm method)

 	__getitem__() (wtforms.fields.FieldList method)

 	(wtforms.form.BaseForm method)

 	__html__() (wtforms.fields.Field method)

 	__init__() (wtforms.csrf.core.CSRFTokenField method)

 	(wtforms.fields.Field method)

 	(wtforms.form.BaseForm method)

 	(wtforms.form.Form method)

 	
 	__iter__() (wtforms.fields.FieldList method)

 	(wtforms.form.BaseForm method)

 	(wtforms.form.Form method)

 	__len__() (wtforms.fields.FieldList method)

 	__setitem__() (wtforms.form.BaseForm method)

 	_value() (wtforms.csrf.core.CSRFTokenField method)

A

 	
 	AnyOf (class in wtforms.validators)

 	
 	append_entry() (wtforms.fields.FieldList method)

B

 	
 	BaseForm (class in wtforms.form)

 	bind_field() (wtforms.meta.DefaultMeta method)

 	
 	BooleanField (class in wtforms.fields)

 	build_csrf() (wtforms.meta.DefaultMeta method)

C

 	
 	cache_translations (wtforms.meta.DefaultMeta attribute)

 	CheckboxInput (class in wtforms.widgets)

 	ColorField (class in wtforms.fields)

 	ColorInput (class in wtforms.widgets)

 	CSRF (class in wtforms.csrf.core)

 	
 	csrf (wtforms.meta.DefaultMeta attribute)

 	csrf_class (wtforms.meta.DefaultMeta attribute)

 	csrf_field_name (wtforms.meta.DefaultMeta attribute)

 	CSRFTokenField (class in wtforms.csrf.core)

 	current_token (wtforms.csrf.core.CSRFTokenField attribute)

D

 	
 	data (wtforms.fields.Field attribute)

 	(wtforms.form.BaseForm attribute)

 	(wtforms.form.Form attribute)

 	DataRequired (class in wtforms.validators)

 	DateField (class in wtforms.fields)

 	DateInput (class in wtforms.widgets)

 	DateTimeField (class in wtforms.fields)

 	DateTimeInput (class in wtforms.widgets)

 	
 	DateTimeLocalField (class in wtforms.fields)

 	DateTimeLocalInput (class in wtforms.widgets)

 	DecimalField (class in wtforms.fields)

 	DecimalRangeField (class in wtforms.fields)

 	default (wtforms.fields.Field attribute)

 	DefaultMeta (class in wtforms.meta)

 	description (wtforms.fields.Field attribute)

 	Disabled (class in wtforms.validators)

E

 	
 	Email (class in wtforms.validators)

 	EmailField (class in wtforms.fields)

 	EmailInput (class in wtforms.widgets)

 	entries (wtforms.fields.FieldList attribute)

 	
 	EqualTo (class in wtforms.validators)

 	errors (wtforms.fields.Field attribute)

 	(wtforms.form.BaseForm attribute)

 	(wtforms.form.Form attribute)

F

 	
 	Field (class in wtforms.fields)

 	field_class (wtforms.csrf.core.CSRF attribute)

 	field_id (wtforms.fields.Label attribute)

 	FieldList (class in wtforms.fields)

 	FileField (class in wtforms.fields)

 	FileInput (class in wtforms.widgets)

 	
 	filters (wtforms.fields.Field attribute)

 	Flags (class in wtforms.fields)

 	flags (wtforms.fields.Field attribute)

 	FloatField (class in wtforms.fields)

 	Form (class in wtforms.form)

 	form_errors (wtforms.form.Form attribute)

 	FormField (class in wtforms.fields)

G

 	
 	generate_csrf_token() (wtforms.csrf.core.CSRF method)

 	
 	get_translations() (wtforms.meta.DefaultMeta method)

 	gettext() (wtforms.fields.Field method)

H

 	
 	HiddenField (class in wtforms.fields)

 	
 	HiddenInput (class in wtforms.widgets)

 	html_params() (in module wtforms.widgets)

I

 	
 	id (wtforms.fields.Field attribute)

 	Input (class in wtforms.widgets)

 	InputRequired (class in wtforms.validators)

 	
 	IntegerField (class in wtforms.fields)

 	IntegerRangeField (class in wtforms.fields)

 	IPAddress (class in wtforms.validators)

L

 	
 	Label (class in wtforms.fields)

 	label (wtforms.fields.Field attribute)

 	
 	Length (class in wtforms.validators)

 	ListWidget (class in wtforms.widgets)

 	locales (wtforms.meta.DefaultMeta attribute)

M

 	
 	MacAddress (class in wtforms.validators)

 	meta (wtforms.fields.Field attribute)

 	(wtforms.form.Form attribute)

 	
 module

 	wtforms.csrf

 	wtforms.csrf.core

 	wtforms.csrf.session

 	wtforms.fields

 	wtforms.form

 	wtforms.meta

 	wtforms.validators

 	
 	MonthField (class in wtforms.fields)

 	MonthInput (class in wtforms.widgets)

 	MultipleFileField (class in wtforms.fields)

N

 	
 	name (wtforms.fields.Field attribute)

 	ngettext() (wtforms.fields.Field method)

 	
 	NoneOf (class in wtforms.validators)

 	NumberInput (class in wtforms.widgets)

 	NumberRange (class in wtforms.validators)

O

 	
 	object_data (wtforms.fields.Field attribute)

 	
 	Optional (class in wtforms.validators)

P

 	
 	PasswordField (class in wtforms.fields)

 	PasswordInput (class in wtforms.widgets)

 	pop_entry() (wtforms.fields.FieldList method)

 	populate_obj() (wtforms.csrf.core.CSRFTokenField method)

 	(wtforms.form.Form method)

 	post_validate() (wtforms.fields.Field method)

 	pre_validate() (wtforms.csrf.core.CSRFTokenField method)

 	(wtforms.fields.Field method)

 	
 	process() (wtforms.csrf.core.CSRFTokenField method)

 	(wtforms.fields.Field method)

 	(wtforms.form.BaseForm method)

 	process_data() (wtforms.fields.Field method)

 	process_errors (wtforms.fields.Field attribute)

 	process_formdata() (wtforms.fields.Field method)

R

 	
 	RadioField (class in wtforms.fields)

 	RadioInput (class in wtforms.widgets)

 	RangeInput (class in wtforms.widgets)

 	
 	raw_data (wtforms.fields.Field attribute)

 	ReadOnly (class in wtforms.validators)

 	Regexp (class in wtforms.validators)

 	render_field() (wtforms.meta.DefaultMeta method)

S

 	
 	SearchField (class in wtforms.fields)

 	SearchInput (class in wtforms.widgets)

 	Select (class in wtforms.widgets)

 	SelectField (class in wtforms.fields)

 	SelectMultipleField (class in wtforms.fields)

 	SessionCSRF (class in wtforms.csrf.session)

 	
 	setup_form() (wtforms.csrf.core.CSRF method)

 	short_name (wtforms.fields.Field attribute)

 	StopValidation (class in wtforms.validators)

 	StringField (class in wtforms.fields)

 	SubmitField (class in wtforms.fields)

 	SubmitInput (class in wtforms.widgets)

T

 	
 	TableWidget (class in wtforms.widgets)

 	TelField (class in wtforms.fields)

 	TelInput (class in wtforms.widgets)

 	text (wtforms.fields.Label attribute)

 	TextArea (class in wtforms.widgets)

 	
 	TextAreaField (class in wtforms.fields)

 	TextInput (class in wtforms.widgets)

 	TimeField (class in wtforms.fields)

 	TimeInput (class in wtforms.widgets)

 	type (wtforms.fields.Field attribute)

U

 	
 	URL (class in wtforms.validators)

 	URLField (class in wtforms.fields)

 	
 	URLInput (class in wtforms.widgets)

 	UUID (class in wtforms.validators)

V

 	
 	validate() (wtforms.fields.Field method)

 	(wtforms.form.BaseForm method)

 	(wtforms.form.Form method)

 	
 	validate_csrf_token() (wtforms.csrf.core.CSRF method)

 	ValidationError (class in wtforms.validators)

W

 	
 	WeekInput (class in wtforms.widgets)

 	widget (wtforms.fields.Field attribute)

 	wrap_formdata() (wtforms.meta.DefaultMeta method)

 	
 wtforms.csrf

 	module

 	
 wtforms.csrf.core

 	module

 	
 wtforms.csrf.session

 	module

 	
 	
 wtforms.fields

 	module

 	
 wtforms.form

 	module

 	
 wtforms.meta

 	module

 	
 wtforms.validators

 	module

Extensions

All WTForms extensions were removed in WTForms 3.0.

	wtforms.ext.appengine was extracted to WTForms-Appengine [https://github.com/wtforms/wtforms-appengine]

	wtforms.ext.csrf was integrated into WTForms core. See CSRF Docs

	wtforms.ext.django was extracted to WTForms-Django [https://github.com/wtforms/wtforms-django]

	wtforms.ext.i18n was integrated into WTForms core. See Internationalization (i18n)

	wtforms.ext.sqlalchemy was extracted to WTForms-SQLAlchemy [https://github.com/wtforms/wtforms-sqlalchemy]

 _static/file.png

nav.xhtml

 Table of Contents

 		
 WTForms

 		
 FAQ

 		
 Does WTForms work with [library here]?

 		
 Does WTForms support unicode?

 		
 What versions of Python are supported?

 		
 How can I contribute to WTForms?

 		
 How do I mark in a template when a field is required?

 		
 Does WTForms handle file uploads?

 		
 Why does blank input not go back to the default value?

 		
 How do I… [convoluted combination of libraries]

 		
 Solving Specific Problems

 		
 Prelude: Poke it with a Stick!

 		
 Removing Fields Per-instance

 		
 Dynamic Form Composition

 		
 Rendering Errors

 		
 Specialty Field Tricks

 		
 Crash Course

 		
 Download / Installation

 		
 Key Concepts

 		
 Getting Started

 		
 Using Forms

 		
 How Forms get data

 		
 Validators

 		
 Rendering Fields

 		
 Displaying Errors

 		
 Custom Validators

 		
 Next Steps

 		
 Forms

 		
 The Form class

 		
 Form

 		
 Defining Forms

 		
 Form Inheritance

 		
 In-line Validators and Filters

 		
 Using Forms

 		
 Low-Level API

 		
 BaseForm

 		
 Fields

 		
 Field definitions

 		
 The Field base class

 		
 Field

 		
 Basic fields

 		
 BooleanField

 		
 DateField

 		
 DateTimeField

 		
 DateTimeLocalField

 		
 DecimalField

 		
 DecimalRangeField

 		
 EmailField

 		
 FileField

 		
 MultipleFileField

 		
 FloatField

 		
 IntegerField

 		
 IntegerRangeField

 		
 MonthField

 		
 RadioField

 		
 SelectField

 		
 SearchField

 		
 SelectMultipleField

 		
 SubmitField

 		
 StringField

 		
 TelField

 		
 TimeField

 		
 URLField

 		
 Convenience Fields

 		
 HiddenField

 		
 PasswordField

 		
 TextAreaField

 		
 ColorField

 		
 Field Enclosures

 		
 FormField

 		
 FieldList

 		
 Custom Fields

 		
 Fields With Custom Constructors

 		
 Considerations for overriding process()

 		
 Additional Helper Classes

 		
 Flags

 		
 Label

 		
 Validators

 		
 ValidationError

 		
 StopValidation

 		
 Built-in validators

 		
 DataRequired

 		
 Email

 		
 EqualTo

 		
 InputRequired

 		
 IPAddress

 		
 Length

 		
 MacAddress

 		
 NumberRange

 		
 Optional

 		
 Regexp

 		
 URL

 		
 UUID

 		
 AnyOf

 		
 NoneOf

 		
 ReadOnly

 		
 Disabled

 		
 Custom validators

 		
 Setting flags on the field with validators

 		
 Widgets

 		
 Built-in widgets

 		
 ColorInput

 		
 CheckboxInput

 		
 DateTimeInput

 		
 DateTimeLocalInput

 		
 DateInput

 		
 EmailInput

 		
 FileInput

 		
 HiddenInput

 		
 Input

 		
 ListWidget

 		
 MonthInput

 		
 NumberInput

 		
 PasswordInput

 		
 RadioInput

 		
 RangeInput

 		
 SubmitInput

 		
 SearchInput

 		
 Select

 		
 TableWidget

 		
 TelInput

 		
 TextArea

 		
 TextInput

 		
 TimeInput

 		
 URLInput

 		
 WeekInput

 		
 Widget-Building Utilities

 		
 html_params()

 		
 Custom widgets

 		
 class Meta

 		
 DefaultMeta

 		
 DefaultMeta.csrf

 		
 DefaultMeta.csrf_class

 		
 DefaultMeta.csrf_field_name

 		
 DefaultMeta.locales

 		
 DefaultMeta.cache_translations

 		
 DefaultMeta.build_csrf()

 		
 DefaultMeta.get_translations()

 		
 DefaultMeta.bind_field()

 		
 DefaultMeta.wrap_formdata()

 		
 DefaultMeta.render_field()

 		
 CSRF Protection

 		
 Using CSRF

 		
 How WTForms CSRF works

 		
 CSRFTokenField

 		
 CSRF

 		
 Creating your own CSRF implementation

 		
 Session-based CSRF implementation

 		
 SessionCSRF

 		
 Example

 		
 Example Integration

 		
 Internationalization (i18n)

 		
 Translating user-provided messages

 		
 Translating built-in messages

 		
 Using the built-in translations provider

 		
 Writing your own translations provider

 		
 Changes

 		
 Version 3.1.2

 		
 Version 3.1.1

 		
 Version 3.1.0

 		
 Version 3.0.1

 		
 Version 3.0.0

 		
 Version 3.0.0a1

 		
 Version 2.3.3

 		
 Version 2.3.2

 		
 Version 2.3.1

 		
 Version 2.3.0

 		
 Version 2.2.1

 		
 Version 2.2

 		
 Version 2.1

 		
 Version 2.0.2

 		
 Version 2.0.1

 		
 Version 2.0

 		
 Version 1.0.5

 		
 Version 1.0.4

 		
 Version 1.0.3

 		
 Version 1.0.2

 		
 Version 1.0.1

 		
 Version 1.0

 		
 Version 0.6.3

 		
 Version 0.6.2

 		
 Version 0.6.1

 		
 Version 0.6

 		
 Version 0.5

 		
 Version 0.4

 		
 Version 0.3.1

 		
 Version 0.3

 		
 Version 0.2

 		
 Version 0.1

 		
 What’s New in WTForms 3

 		
 New Features

 		
 Past Major Releases

 		
 WTForms 2

 		
 BSD-3-Clause License

 		
 Contributing to WTForms

 		
 How to Contribute

 		
 Contribution Guidelines

 		
 Note on API compatibility

_static/minus.png

_static/plus.png

