
WTForms Documentation (3.1.x)
Release 3.1.2

WTForms

Jan 06, 2024

CONTENTS

1 Help 3

2 API 15

3 Information 53

Python Module Index 67

Index 69

i

ii

WTForms Documentation (3.1.x), Release 3.1.2

WTForms is a flexible forms validation and rendering library for Python web development. It can work with whatever
web framework and template engine you choose. It supports data validation, CSRF protection, internationalization
(I18N), and more. There are various community libraries that provide closer integration with popular frameworks.

CONTENTS 1

WTForms Documentation (3.1.x), Release 3.1.2

2 CONTENTS

CHAPTER

ONE

HELP

1.1 FAQ

This contains the most commonly asked questions about WTForms. The most current version of this document can
always be found on the WTForms Website.

1.1.1 Does WTForms work with [library here]?

The answer is most likely yes. WTForms tries to provide as usable an API as possible. We’ve listed here some of the
known libraries to work with WTForms, but if it’s not listed, it doesn’t mean it won’t work.

• Request/Form Input

– Django

– Webob (Includes Pylons, Google App Engine, Turbogears)

– Werkzeug (Includes Flask, Tipfy)

– any other cgi.FieldStorage-type multidict

• Templating Engines

– Jinja

– Mako

– Django Templates (To get the full power of WTForms in your templates, use WTForms-Django.)

– Genshi

• Database Objects

– Pretty much any ORM or object-DB should work, as long as data objects allow attribute access to their
members.

Special support is there for SQLAlchemy, Google App Engine, and Django collections via companion
packages.

3

https://wtforms.readthedocs.io/
https://github.com/wtforms/wtforms-django
https://github.com/wtforms/wtforms-sqlalchemy
https://github.com/wtforms/wtforms-appengine
https://github.com/wtforms/wtforms-django

WTForms Documentation (3.1.x), Release 3.1.2

1.1.2 Does WTForms support unicode?

Simple answer: Yes.

Longer answer: WTForms uses unicode strings throughout the source code, and assumes that form input has already
been coerced to unicode by your framework (Most frameworks already do this.) WTForms fields render to unicode
strings by default, and therefore as long as your templating engine can work with that, you should have no unicode
issues.

1.1.3 What versions of Python are supported?

WTForms supports Python 3.8+

1.1.4 How can I contribute to WTForms?

WTForms is not that scary. Really. We try to keep it as succinct and readable as possible. For bugs and feature requests,
you can file a ticket on the project page.

1.1.5 How do I mark in a template when a field is required?

Some validators (notably Required and Optional) set flags on the fields’ flags object. To use this in a template, you
can do something like:

{% for field in form %}
{{ field }}
{% if field.flags.required %}*{% endif %}{{ field.label }}

{% endfor %}

1.1.6 Does WTForms handle file uploads?

Currently, it does not. This is because WTForms strives to be framework-agnostic, and every web framework handles
file uploads somewhat differently. WTForms has a FileField which will let you render a file input widget, but the
rest is up to you. An example use in a django-ish framework:

class MyForm(Form):
image = FileField()

def my_view(request):
form = MyForm(request.POST)
file_wrapper = request.FILES[form.image.name]
Do things with your file wrapper now

Using form.image.name is an easy way to know what input name was generated for your file input, even if the form
is prefixed.

4 Chapter 1. Help

https://github.com/wtforms/wtforms

WTForms Documentation (3.1.x), Release 3.1.2

1.1.7 Why does blank input not go back to the default value?

A key design decision of WTForms was that form data -always- takes precedence when there’s a form submission. That
is, if a field exists on a form, and a form was posted, but that field’s value was missing, it will not revert to a default,
but instead store an empty value (and in some cases cause a validation error.)

This is for a number of reasons:

1. Security. If a form reverted to defaults on missing data, then an evil user could potentially cause problems by
submitting a hand-coded form with key missing fields.

2. Bug-finding. If you omitted a field in your template, it might fall through to the default and you’d possibly miss
it.

3. Consistency.

1.1.8 How do I. . . [convoluted combination of libraries]

You’ll probably want to check out our Solving Specific Problems doc.

1.2 Solving Specific Problems

What follows is a collection of recipes that will help you tackle specific challenges that may crop up when using
WTForms along with various other python frameworks.

1.2.1 Prelude: Poke it with a Stick!

The aim of WTForms is not to do it all, but rather to stick to the basics, while being compatible with as many frameworks
as possible. We attempt to place useful things in the API so that developers can get what they want out of it, if the
default behaviour is not desired.

For example, many fields in WTForms are iterable to allow you to access enclosed fields inside them, providing you
another way to customize their rendering. Many attributes on the fields are readily available for you to use in your
templates. We encourage you to use the introspection abilities of the python interpreter to find new ways to manipulate
fields. When introspection fails, you should try reading the source for insight into how things work and how you can
use things to your advantage.

If you come up with a solution that you feel is useful to others and wish to share it, please let us know on GitHub by
raising an issue or submitting a pull request.

1.2.2 Removing Fields Per-instance

Sometimes, you create a form which has fields that aren’t useful in all circumstances or to all users. While it is indeed
possible with form inheritance to define a form with exactly the fields you need, sometimes it is necessary to just tweak
an existing form. Luckily, forms can have fields removed post-instantiation by using the del keyword:

class MagazineIssueForm(Form):
title = StringField()
year = IntegerField('Year')
month = SelectField(choices=MONTHS)

def edit_issue():
(continues on next page)

1.2. Solving Specific Problems 5

WTForms Documentation (3.1.x), Release 3.1.2

(continued from previous page)

publication = get_something_from_db()
form = MagazineIssueForm(...)

if publication.frequency == 'annual':
del form.month

render our form

Removing a field from a form will cause it to not be validated, and it will not show up when iterating the form. It’s as
if the field was never defined to begin with. Note that you cannot add fields in this way, as all fields must exist on the
form when processing input data.

1.2.3 Dynamic Form Composition

This is a rare occurrence, but sometimes it’s necessary to create or modify a form dynamically in your view. This is
possible by creating internal subclasses:

def my_view():
class F(MyBaseForm):

pass

F.username = StringField('username')
for name in iterate_some_model_dynamically():

setattr(F, name, StringField(name.title()))

form = F(request.POST, ...)
do view stuff

1.2.4 Rendering Errors

In your template, you will often find yourself faced with the repetitive task of rendering errors for a form field. Here’s
a Jinja macro that may save you time:

{% macro with_errors(field) %}
<div class="form_field">
{% if field.errors %}

{% set css_class = 'has_error ' + kwargs.pop('class', '') %}
{{ field(class=css_class, **kwargs) }}
<ul class="errors">{% for error in field.errors %}{{ error|e }}{%␣

→˓endfor %}
{% else %}

{{ field(**kwargs) }}
{% endif %}
</div>

{% endmacro %}

Usage: {{ with_errors(form.field, style='font-weight: bold') }}

6 Chapter 1. Help

https://jinja.palletsprojects.com/

WTForms Documentation (3.1.x), Release 3.1.2

1.2.5 Specialty Field Tricks

By using widget and field combinations, it is possible to create new behaviours and entirely new ways of displaying a
form input to the user.

A classic example is easily supported using the widget= keyword arg, such as making a hidden field which stores and
coerces integer data:

user_id = IntegerField(widget=HiddenInput())

Alternatively, you can create a field which does this by subclassing:

class HiddenInteger(IntegerField):
widget = HiddenInput()

Some fields support even more sophisticated customization.For example, what if a multiple-select was desired where
instead of using a multi-row <select>, a series of checkboxes was used? By using widgets, one can get that behavior
very easily:

class MultiCheckboxField(SelectMultipleField):
"""
A multiple-select, except displays a list of checkboxes.

Iterating the field will produce subfields, allowing custom rendering of
the enclosed checkbox fields.
"""
widget = widgets.ListWidget(prefix_label=False)
option_widget = widgets.CheckboxInput()

By overriding option_widget, our new multiple-select when iterated will now produce fields that render as checkboxes.

1.3 Crash Course

So you’ve cracked your knuckles and started working on that awesome python webapp you want to write. You get
through writing a few pages and finally you need to tackle that loathsome task: form input handling and validation.
Enter WTForms.

But why do I need yet another framework? Well, some webapp frameworks take the approach of associating database
models with form handling. While this can be handy for very basic create/update views, chances are not every form
you need can map directly to a database model. Or maybe you already use a generic form handling framework but you
want to customize the HTML generation of those form fields, and define your own validation.

With WTForms, your form field HTML can be generated for you, but we let you customize it in your templates. This
allows you to maintain separation of code and presentation, and keep those messy parameters out of your python code.
Because we strive for loose coupling, you should be able to do that in any templating engine you like, as well.

1.3. Crash Course 7

WTForms Documentation (3.1.x), Release 3.1.2

1.3.1 Download / Installation

WTForms is available through PyPI. Install it using pip:

pip install WTForms

1.3.2 Key Concepts

• Forms are the core container of WTForms. Forms represent a collection of fields, which can be accessed on the
form dictionary-style or attribute style.

• Fields do most of the heavy lifting. Each field represents a data type and the field handles coercing form input
to that datatype. For example, IntegerField and StringField represent two different data types. Fields contain a
number of useful properties, such as a label, description, and a list of validation errors, in addition to the data
the field contains.

• Every field has a Widget instance. The widget’s job is rendering an HTML representation of that field. Widget
instances can be specified for each field but every field has one by default which makes sense. Some fields are
simply conveniences, for example TextAreaField is simply a StringField with the default widget being a
TextArea.

• In order to specify validation rules, fields contain a list of Validators.

1.3.3 Getting Started

Let’s get right down to business and define our first form:

from wtforms import Form, BooleanField, StringField, validators

class RegistrationForm(Form):
username = StringField('Username', [validators.Length(min=4, max=25)])
email = StringField('Email Address', [validators.Length(min=6, max=35)])
accept_rules = BooleanField('I accept the site rules', [validators.InputRequired()])

When you create a form, you define the fields in a way that is similar to the way many ORM’s have you define their
columns: By defining class variables which are instantiations of the fields.

Because forms are regular Python classes, you can easily extend them as you would expect:

class ProfileForm(Form):
birthday = DateTimeField('Your Birthday', format='%m/%d/%y')
signature = TextAreaField('Forum Signature')

class AdminProfileForm(ProfileForm):
username = StringField('Username', [validators.Length(max=40)])
level = IntegerField('User Level', [validators.NumberRange(min=0, max=10)])

Via subclassing, AdminProfileForm gains all the fields already defined in ProfileForm. This allows you to easily share
common subsets of fields between forms, such as the example above, where we are adding admin-only fields to Pro-
fileForm.

8 Chapter 1. Help

https://pypi.org/project/WTForms/

WTForms Documentation (3.1.x), Release 3.1.2

Using Forms

Using a form is as simple as instantiating it. Consider the following django-like view, using the RegistrationForm we
defined earlier:

def register(request):
form = RegistrationForm(request.POST)
if request.method == 'POST' and form.validate():

user = User()
user.username = form.username.data
user.email = form.email.data
user.save()
redirect('register')

return render_response('register.html', form=form)

First, we instantiate the form, providing it with any data available in request.POST. We then check if the request is
made using POST, and if it is, we validate the form, and check that the user accepted the rules. If successful, we create
a new User and assign the data from the validated form to it, and save it.

Editing existing objects

Our earlier registration example showed how to accept input and validate it for new entries, but what if we want to edit
an existing object? Easy:

def edit_profile(request):
user = request.current_user
form = ProfileForm(request.POST, user)
if request.method == 'POST' and form.validate():

form.populate_obj(user)
user.save()
redirect('edit_profile')

return render_response('edit_profile.html', form=form)

Here, we instantiate the form by providing both request.POST and the user object to the form. By doing this, the form
will get any data that isn’t present in the post data from the user object.

We’re also using the form’s populate_obj method to re-populate the user object with the contents of the validated form.
This method is provided for convenience, for use when the field names match the names on the object you’re providing
with data. Typically, you will want to assign the values manually, but for this simple case it’s perfect. It can also be
useful for CRUD and admin forms.

Exploring in the console

WTForms forms are very simple container objects, and perhaps the easiest way to find out what’s available to you in a
form is to play around with a form in the console:

>>> from wtforms import Form, StringField, validators
>>> class UsernameForm(Form):
... username = StringField('Username', [validators.Length(min=5)], default='test')
...
>>> form = UsernameForm()
>>> form['username']

(continues on next page)

1.3. Crash Course 9

WTForms Documentation (3.1.x), Release 3.1.2

(continued from previous page)

<wtforms.fields.core.StringField object at ...>
>>> form.username.data
'test'
>>> form.validate()
False
>>> form.errors
{'username': ['Field must be at least 5 characters long.']}

What we’ve found here is that when you instantiate a form, it contains instances of all the fields, which can be accessed
via either dictionary-style or attribute-style. These fields have their own properties, as does the enclosing form.

When we validate the form, it returns False, meaning at least one validator was not satisfied. form.errors will give
you a summary of all the errors.

>>> form2 = UsernameForm(username='Robert')
>>> form2.data
{'username': 'Robert'}
>>> form2.validate()
True

This time, we passed a new value for username when instantiating UserForm, and it was sufficient to validate the form.

How Forms get data

In addition to providing data using the first two arguments (formdata and obj), you can pass keyword arguments to
populate the form. Note though that a few names are reserved: formdata, obj, and prefix.

formdata takes precedence over obj, which itself takes precedence over keyword arguments. For example:

def change_username(request):
user = request.current_user
form = ChangeUsernameForm(request.POST, user, username='silly')
if request.method == 'POST' and form.validate():

user.username = form.username.data
user.save()
return redirect('change_username')

return render_response('change_username.html', form=form)

While you almost never use all three methods together in practice, it illustrates how WTForms looks up the username
field:

1. If a form was submitted (request.POST is not empty), process the form input. Even if there was no form input
for this field in particular, if there exists form input of any sort, then we will process the form input.

2. If there was no form input, then try the following in order:

1. Check if user has an attribute named username.

2. Check if a keyword argument named username was provided.

3. Finally, if everything else fails, use the default value provided by the field, if any.

10 Chapter 1. Help

WTForms Documentation (3.1.x), Release 3.1.2

Validators

Validation in WTForms is done by providing a field with a set of validators to run when the containing form is validated.
You provide these via the field constructor’s second argument, validators:

class ChangeEmailForm(Form):
email = StringField('Email', [validators.Length(min=6, max=120), validators.Email()])

You can provide any number of validators to a field. Typically, you will want to provide a custom error message:

class ChangeEmailForm(Form):
email = StringField('Email', [

validators.Length(min=6, message=_('Little short for an email address?')),
validators.Email(message=_('That\'s not a valid email address.'))

])

It is generally preferable to provide your own messages, as the default messages by necessity are generic. This is also
the way to provide localised error messages.

For a list of all the built-in validators, check the Validators Reference

Rendering Fields

Rendering a field is as simple as coercing it to a string:

>>> from wtforms import Form, StringField
>>> class SimpleForm(Form):
... content = StringField('content')
...
>>> form = SimpleForm(content='foobar')
>>> str(form.content)
Markup('<input id="content" name="content" type="text" value="foobar">')

However, the real power comes from rendering the field with its __call__() method. By calling the field, you can
provide keyword arguments, which will be injected as html attributes in the output:

>>> form.content(style="width: 200px;", class_="bar")
Markup('<input class="bar" id="content" name="content" style="width: 200px;" type="text"␣
→˓value="foobar">')

Now let’s apply this power to rendering a form in a Jinja template. First, our form:

class LoginForm(Form):
username = StringField('Username')
password = PasswordField('Password')

form = LoginForm()

And the template:

<form method="POST" action="/login">
<div>{{ form.username.label }}: {{ form.username(class="css_class") }}</div>
<div>{{ form.password.label }}: {{ form.password() }}</div>

</form>

1.3. Crash Course 11

https://jinja.palletsprojects.com/

WTForms Documentation (3.1.x), Release 3.1.2

Alternately, if you’re using Django templates, you can use the form_field templatetag we provide in our Django exten-
sion, when you want to pass keyword arguments:

{% load wtforms %}
<form method="POST" action="/login">

<div>
{{ form.username.label }}:
{% form_field form.username class="css_class" %}

</div>
<div>

{{ form.password.label }}:
{{ form.password }}

</div>
</form>

Both of these will output:

<form method="POST" action="/login">
<div>

<label for="username">Username</label>:
<input class="css_class" id="username" name="username" type="text" value="" />

</div>
<div>

<label for="password">Password</label>:
<input id="password" name="password" type="password" value="" />

</div>
</form>

WTForms is template engine agnostic, and will work with anything that allows attribute access, string coercion, and/or
function calls. The form_field templatetag is provided as a convenience as you can’t pass arguments in Django tem-
plates.

Displaying Errors

Now that we have a template for our form, let’s add error messages:

<form method="POST" action="/login">
<div>{{ form.username.label }}: {{ form.username(class="css_class") }}</div>
{% if form.username.errors %}

<ul class="errors">{% for error in form.username.errors %}{{ error }}{
→˓% endfor %}
{% endif %}

<div>{{ form.password.label }}: {{ form.password() }}</div>
{% if form.password.errors %}

<ul class="errors">{% for error in form.password.errors %}{{ error }}{
→˓% endfor %}
{% endif %}

</form>

If you prefer one big list of errors at the top, this is also easy:

12 Chapter 1. Help

WTForms Documentation (3.1.x), Release 3.1.2

{% if form.errors %}
<ul class="errors">

{% for field_name, field_errors in form.errors|dictsort if field_errors %}
{% for error in field_errors %}

{{ form[field_name].label }}: {{ error }}
{% endfor %}

{% endfor %}

{% endif %}

As error handling can become a rather verbose affair, it is preferable to use Jinja macros (or equivalent) to reduce
boilerplate in your templates. (example)

Custom Validators

There are two ways to provide custom validators. By defining a custom validator and using it on a field:

from wtforms.validators import ValidationError

def is_42(form, field):
if field.data != 42:

raise ValidationError('Must be 42')

class FourtyTwoForm(Form):
num = IntegerField('Number', [is_42])

Or by providing an in-form field-specific validator:

class FourtyTwoForm(Form):
num = IntegerField('Number')

def validate_num(form, field):
if field.data != 42:

raise ValidationError('Must be 42')

For more complex validators that take parameters, check the Custom validators section.

1.3.4 Next Steps

The crash course has just skimmed the surface on how you can begin using WTForms to handle form input and vali-
dation in your application. For more information, you’ll want to check the following:

• The WTForms documentation has API documentation for the entire library.

• Solving Specific Problems can help you tackle specific integration issues with WTForms and other frameworks.

1.3. Crash Course 13

WTForms Documentation (3.1.x), Release 3.1.2

14 Chapter 1. Help

CHAPTER

TWO

API

2.1 Forms

Forms provide the highest level API in WTForms. They contain your field definitions, delegate validation, take input,
aggregate errors, and in general function as the glue holding everything together.

2.1.1 The Form class

class wtforms.form.Form
Declarative Form base class.

Construction

__init__(formdata=None, obj=None, prefix='', data=None, meta=None, **kwargs)

Parameters

• formdata – Input data coming from the client, usually request.form or equivalent.
Should provide a “multi dict” interface to get a list of values for a given key, such as what
Werkzeug, Django, and WebOb provide.

• obj – Take existing data from attributes on this object matching form field attributes. Only
used if formdata is not passed.

• prefix – If provided, all fields will have their name prefixed with the value. This is for
distinguishing multiple forms on a single page. This only affects the HTML name for
matching input data, not the Python name for matching existing data.

• data – Take existing data from keys in this dict matching form field attributes. obj takes
precedence if it also has a matching attribute. Only used if formdata is not passed.

• meta – A dict of attributes to override on this form’s meta instance.

• extra_filters – A dict mapping field attribute names to lists of extra filter functions
to run. Extra filters run after filters passed when creating the field. If the form has
filter_<fieldname>, it is the last extra filter.

• kwargs – Merged with data to allow passing existing data as parameters. Overwrites any
duplicate keys in data. Only used if formdata is not passed.

Initialize a Form. This is usually done in the context of a view/controller in your application. When a Form
is constructed, the fields populate their input based on the formdata, obj, and kwargs.

Note Backing-store objects and kwargs are both expected to be provided with the values being already-
coerced datatypes. WTForms does not check the types of incoming object-data or coerce them like it will

15

WTForms Documentation (3.1.x), Release 3.1.2

for formdata as it is expected this data is defaults or data from a backing store which this form represents.
See the section on using Forms for more information.

Properties

data
A dict containing the data for each field.

Note that this is generated each time you access the property, so care should be taken when using it, as it
can potentially be very expensive if you repeatedly access it. Typically used if you need to iterate all data
in the form. If you just need to access the data for known fields, you should use form.<field>.data, not this
proxy property.

errors
A dict containing a list of errors for each field. Empty if the form hasn’t been validated, or there were no
errors.

If present, the key None contains the content of form_errors.

form_errors
A list of form-level errors. Those are errors that does not concern a particuliar field, but the whole form
consistency. Those errors are often set when overriding validate().

meta
This is an object which contains various configuration options and also ability to customize the behavior
of the form. See the class Meta doc for more information on what can be customized with the class Meta
options.

Methods

validate(extra_validators=None)
Validate the form by calling validate on each field. Returns True if validation passes.

If the form defines a validate_<fieldname> method, it is appended as an extra validator for the field’s
validate.

Parameters extra_validators – A dict mapping field names to lists of extra validator methods
to run. Extra validators run after validators passed when creating the field. If the form has
validate_<fieldname>, it is the last extra validator.

populate_obj(obj)
Populates the attributes of the passed obj with data from the form’s fields.

Note This is a destructive operation; Any attribute with the same name as a field will be overrid-
den. Use with caution.

One common usage of this is an edit profile view:

def edit_profile(request):
user = User.objects.get(pk=request.session['userid'])
form = EditProfileForm(request.POST, obj=user)

if request.POST and form.validate():
form.populate_obj(user)
user.save()
return redirect('/home')

return render_to_response('edit_profile.html', form=form)

In the above example, because the form isn’t directly tied to the user object, you don’t have to worry about
any dirty data getting onto there until you’re ready to move it over.

16 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

__iter__()
Iterate form fields in creation order.

{% for field in form %}
<tr>

<th>{{ field.label }}</th>
<td>{{ field }}</td>

</tr>
{% endfor %}

__contains__(name)
Returns True if the named field is a member of this form.

2.1.2 Defining Forms

To define a form, one makes a subclass of Form and defines the fields declaratively as class attributes:

class MyForm(Form):
first_name = StringField('First Name', validators=[validators.input_required()])
last_name = StringField('Last Name', validators=[validators.optional()])

Field names can be any valid python identifier, with the following restrictions:

• Field names are case-sensitive.

• Field names may not begin with “_” (underscore)

• Field names may not begin with “validate”

Form Inheritance

Forms may subclass other forms as needed. The new form will contain all fields of the parent form, as well as any new
fields defined on the subclass. A field name re-used on a subclass causes the new definition to obscure the original.

class PastebinEdit(Form):
language = SelectField('Programming Language', choices=PASTEBIN_LANGUAGES)
code = TextAreaField()

class PastebinEntry(PastebinEdit):
name = StringField('User Name')

In-line Validators and Filters

In order to provide custom validation for a single field without needing to write a one-time-use validator, validation
can be defined inline by defining a method with the convention validate_fieldname:

class SignupForm(Form):
age = IntegerField('Age')

def validate_age(form, field):
if field.data < 13:

raise ValidationError("We're sorry, you must be 13 or older to register")

The same principle applies for filters with the convention filter_fieldname:

2.1. Forms 17

WTForms Documentation (3.1.x), Release 3.1.2

class SignupForm(Form):
name = StringField('name')

def filter_name(form, field):
return field.strip()

Note that filters are applied after processing the default and incoming data, but before validation.

2.1.3 Using Forms

A form is most often constructed in the controller code for handling an action, with the form data wrapper from the
framework passed to its constructor, and optionally an ORM object. A typical view begins something like:

def edit_article(request):
article = Article.get(...)
form = MyForm(request.POST, article)

A typical CRUD view has a user editing an object that needs various fields updated. The Form would have fields
describing the fields to be updated and the validation rules, where the attribute names of the fields match those of the
attribute names on the object. The second parameter to the Form, the obj parameter, is used to populate form defaults
on the initial view.

Note: While we did pass an object as the data source, this object data is only used if there is no POST data. If there
is any POST data at all, then the object data is ignored. This is done for security and consistency reasons.

This pattern is mostly a convenience since most application controllers don’t separate GET and POST requests into
separate view methods.

The constructed form can then validate any input data and generate errors if invalid. Typically, the validation pattern
in the view looks like:

if request.POST and form.validate():
form.populate_obj(article)
article.save()
return redirect('/articles')

Note that we have it so validate() is only called if there is POST data. The reason we gate the validation check this
way is that when there is no POST data (such as in a typical CRUD form) we don’t want to cause validation errors.

Inside the gated block, we call populate_obj() to copy the data onto fields on the ‘article’ object. We also then
redirect after a successful completion. The reason we redirect after the post is a best-practice associated with the
Post/Redirect/Get design pattern.

If there is no POST data, or the data fails to validate, then the view “falls through” to the rendering portion. The Form
object can be passed into the template and its attributes can be used to render the fields and also for displaying errors:

return render('edit.html', form=form, article=article)

So there we have a full simple “edit object” page setup which illustrates a best-practice way of using WTForms. This
is by no means the only way to use WTForms, but just an illustration of how the various features work.

Here is the full code for the view we just made:

18 Chapter 2. API

https://en.wikipedia.org/wiki/Post/Redirect/Get

WTForms Documentation (3.1.x), Release 3.1.2

def edit_article(request):
article = Article.get(...)
form = MyForm(request.POST, article)

if request.POST and form.validate():
form.populate_obj(article)
article.save()
return redirect('/articles')

return render('edit.html', form=form, article=article)

2.1.4 Low-Level API

Warning: This section is provided for completeness; and is aimed at authors of complementary libraries and those
looking for very special behaviors. Don’t use BaseForm unless you know exactly why you are using it.

For those looking to customize how WTForms works, for libraries or special applications, it might be worth using the
BaseForm class. BaseForm is the parent class of Form , and most of the implementation logic from Form is actually
handled by BaseForm.

The major difference on the surface between BaseForm and Form is that fields are not defined declaratively on a subclass
of BaseForm. Instead, you must pass a dict of fields to the constructor. Likewise, you cannot add fields by inheritance.
In addition, BaseForm does not provide: sorting fields by definition order, or inline validate_foo validators. Because
of this, for the overwhelming majority of uses we recommend you use Form instead of BaseForm in your code.

What BaseForm provides is a container for a collection of fields, which it will bind at instantiation, and hold in an
internal dict. Dict-style access on a BaseForm instance will allow you to access (and modify) the enclosed fields.

class wtforms.form.BaseForm
Base Form Class. Provides core behaviour like field construction, validation, and data and error proxying.

Construction

__init__(fields, prefix='', meta=<DefaultMeta>)

Parameters

• fields – A dict or sequence of 2-tuples of partially-constructed fields.

• prefix – If provided, all fields will have their name prefixed with the value.

• meta – A meta instance which is used for configuration and customization of WTForms
behaviors.

form = BaseForm({
'name': StringField(),
'customer.age': IntegerField("Customer's Age")

})

Because BaseForm does not require field names to be valid identifiers, they can be most any python string.
We recommend keeping it simple to avoid incompatibility with browsers and various form input frameworks
where possible.

Properties

2.1. Forms 19

WTForms Documentation (3.1.x), Release 3.1.2

data
see Form.data

errors
see Form.errors

Methods

process(formdata=None, obj=None, data=None, extra_filters=None, **kwargs)
Process default and input data with each field.

Parameters

• formdata – Input data coming from the client, usually request.form or equivalent.
Should provide a “multi dict” interface to get a list of values for a given key, such as what
Werkzeug, Django, and WebOb provide.

• obj – Take existing data from attributes on this object matching form field attributes. Only
used if formdata is not passed.

• data – Take existing data from keys in this dict matching form field attributes. obj takes
precedence if it also has a matching attribute. Only used if formdata is not passed.

• extra_filters – A dict mapping field attribute names to lists of extra filter functions
to run. Extra filters run after filters passed when creating the field. If the form has
filter_<fieldname>, it is the last extra filter.

• kwargs – Merged with data to allow passing existing data as parameters. Overwrites any
duplicate keys in data. Only used if formdata is not passed.

Since BaseForm does not take its data at instantiation, you must call this to provide form data to the enclosed
fields. Accessing the field’s data before calling process is not recommended.

validate(extra_validators=None)
Validates the form by calling validate on each field.

Parameters extra_validators – If provided, is a dict mapping field names to a sequence of
callables which will be passed as extra validators to the field’s validate method.

Returns True if no errors occur.

__iter__()
Iterate form fields in creation order.

Unlike Form , fields are not iterated in definition order, but rather in whatever order the dict decides to yield
them.

__contains__(name)
Returns True if the named field is a member of this form.

__getitem__(name)
Dict-style access to this form’s fields.

__setitem__(name, value)
Bind a field to this form.

form['openid.name'] = StringField()

Fields can be added and replaced in this way, but this must be done before process() is called, or the
fields will not have the opportunity to receive input data. Similarly, changing fields after validate() will
have undesired effects.

20 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

__delitem__(name)
Remove a field from this form.

The same caveats apply as with __setitem__().

2.2 Fields

Fields are responsible for rendering and data conversion. They delegate to validators for data validation.

2.2.1 Field definitions

Fields are defined as members on a form in a declarative fashion:

class MyForm(Form):
name = StringField('Full Name', [validators.required(), validators.

→˓length(max=10)])
address = TextAreaField('Mailing Address', [validators.optional(), validators.

→˓length(max=200)])

When a field is defined on a form, the construction parameters are saved until the form is instantiated. At form instan-
tiation time, a copy of the field is made with all the parameters specified in the definition. Each instance of the field
keeps its own field data and errors list.

The label and validators can be passed to the constructor as sequential arguments, while all other arguments should
be passed as keyword arguments. Some fields (such as SelectField) can also take additional field-specific keyword
arguments. Consult the built-in fields reference for information on those.

2.2.2 The Field base class

class wtforms.fields.Field
Stores and processes data, and generates HTML for a form field.

Field instances contain the data of that instance as well as the functionality to render it within your Form. They
also contain a number of properties which can be used within your templates to render the field and label.

Construction

__init__(label=None, validators=None, filters=(), description='', id=None, default=None, widget=None,
render_kw=None, name=None, _form=None, _prefix='', _translations=None, _meta=None)

Construct a new field.

Parameters

• label – The label of the field.

• validators – A sequence of validators to call when validate is called.

• filters – A sequence of callable which are run by process() to filter or transform the
input data. For example StringForm(filters=[str.strip, str.upper]). Note that
filters are applied after processing the default and incoming data, but before validation.

• description – A description for the field, typically used for help text.

• id – An id to use for the field. A reasonable default is set by the form, and you shouldn’t
need to set this manually.

2.2. Fields 21

WTForms Documentation (3.1.x), Release 3.1.2

• default – The default value to assign to the field, if no form or object input is provided.
May be a callable.

• widget – If provided, overrides the widget used to render the field.

• render_kw (dict) – If provided, a dictionary which provides default keywords that will
be given to the widget at render time.

• name – The HTML name of this field. The default value is the Python attribute name.

• _form – The form holding this field. It is passed by the form itself during construction.
You should never pass this value yourself.

• _prefix – The prefix to prepend to the form name of this field, passed by the enclosing
form during construction.

• _translations – A translations object providing message translations. Usually passed
by the enclosing form during construction. See I18n docs for information on message
translations.

• _meta – If provided, this is the ‘meta’ instance from the form. You usually don’t pass this
yourself.

If _form isn’t provided, an UnboundField will be returned instead. Call its bind() method with a form
instance and a name to construct the field.

Validation

To validate the field, call its validate method, providing a form and any extra validators needed. To extend
validation behaviour, override pre_validate or post_validate.

validate(form, extra_validators=())
Validates the field and returns True or False. self.errors will contain any errors raised during validation.
This is usually only called by Form.validate.

Subfields shouldn’t override this, but rather override either pre_validate, post_validate or both, depending
on needs.

Parameters

• form – The form the field belongs to.

• extra_validators – A sequence of extra validators to run.

pre_validate(form)
Override if you need field-level validation. Runs before any other validators.

Parameters form – The form the field belongs to.

post_validate(form, validation_stopped)
Override if you need to run any field-level validation tasks after normal validation. This shouldn’t be needed
in most cases.

Parameters

• form – The form the field belongs to.

• validation_stopped – True if any validator raised StopValidation.

errors
If validate encounters any errors, they will be inserted into this list.

Data access and processing

To handle incoming data from python, override process_data. Similarly, to handle incoming data from the
outside, override process_formdata.

22 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#dict

WTForms Documentation (3.1.x), Release 3.1.2

process(formdata[, data])
Process incoming data, calling process_data, process_formdata as needed, and run filters.

If data is not provided, process_data will be called on the field’s default.

Field subclasses usually won’t override this, instead overriding the process_formdata and process_data
methods. Only override this for special advanced processing, such as when a field encapsulates many
inputs.

Parameters extra_filters – A sequence of extra filters to run.

process_data(value)
Process the Python data applied to this field and store the result.

This will be called during form construction by the form’s kwargs or obj argument.

Parameters value – The python object containing the value to process.

process_formdata(valuelist)
Process data received over the wire from a form.

This will be called during form construction with data supplied through the formdata argument.

Parameters valuelist – A list of strings to process.

data
Contains the resulting (sanitized) value of calling either of the process methods. Note that it is not HTML
escaped when using in templates.

raw_data
If form data is processed, is the valuelist given from the formdata wrapper. Otherwise, raw_data will be
None.

object_data
This is the data passed from an object or from kwargs to the field, stored unmodified. This can be used by
templates, widgets, validators as needed (for comparison, for example)

Rendering

To render a field, simply call it, providing any values the widget expects as keyword arguments. Usually the
keyword arguments are used for extra HTML attributes.

__call__(**kwargs)
Render this field as HTML, using keyword args as additional attributes.

This delegates rendering to meta.render_field whose default behavior is to call the field’s widget,
passing any keyword arguments from this call along to the widget.

In all of the WTForms HTML widgets, keyword arguments are turned to HTML attributes, though in theory
a widget is free to do anything it wants with the supplied keyword arguments, and widgets don’t have to
even do anything related to HTML.

If one wants to pass the “class” argument which is a reserved keyword in some python-based templating
languages, one can do:

form.field(class_="text_blob")

This will output (for a text field):

<input type="text" name="field_name" value="blah" class="text_blob" id="field_
→˓name" />

Note: Simply coercing the field to a string will render it as if it was called with no arguments.

2.2. Fields 23

WTForms Documentation (3.1.x), Release 3.1.2

__html__()
Returns a HTML representation of the field. For more powerful rendering, see the __call__() method.

Many template engines use the __html__ method when it exists on a printed object to get an ‘html-safe’
string that will not be auto-escaped. To allow for printing a bare field without calling it, all WTForms fields
implement this method as well.

Message Translations

gettext(string)
Get a translation for the given message.

This proxies for the internal translations object.

Parameters string – A string to be translated.

Returns A string which is the translated output.

ngettext(singular, plural, n)
Get a translation for a message which can be pluralized.

Parameters

• singular (str) – The singular form of the message.

• plural (str) – The plural form of the message.

• n (int) – The number of elements this message is referring to

Properties

name
The HTML form name of this field. This is the name as defined in your Form prefixed with the prefix
passed to the Form constructor.

short_name
The un-prefixed name of this field.

id
The HTML ID of this field. If unspecified, this is generated for you to be the same as the field name.

label
This is a Label instance which when evaluated as a string returns an HTML <label for="id"> construct.

default
This is whatever you passed as the default to the field’s constructor, otherwise None.

description
A string containing the value of the description passed in the constructor to the field; this is not HTML
escaped.

errors
A sequence containing the validation errors for this field.

process_errors
Errors obtained during input processing. These will be prepended to the list of errors at validation time.

widget
The widget used to render the field.

type
The type of this field, as a string. This can be used in your templates to do logic based on the type of field:

24 Chapter 2. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

WTForms Documentation (3.1.x), Release 3.1.2

{% for field in form %}
<tr>
{% if field.type == "BooleanField" %}

<td></td>
<td>{{ field }} {{ field.label }}</td>

{% else %}
<td>{{ field.label }}</td>
<td>{{ field }}</td>

{% endif %}
</tr>

{% endfor %}

flags
An object containing flags set either by the field itself, or by validators on the field. For example, the built-in
InputRequired validator sets the required flag. An unset flag will result in None.

{% for field in form %}
<tr>

<th>{{ field.label }} {% if field.flags.required %}*{% endif %}</th>
<td>{{ field }}</td>

</tr>
{% endfor %}

meta
The same meta object instance as is available as Form.meta

filters
The same sequence of filters that was passed as the filters= to the field constructor. This is usually a
sequence of callables.

2.2.3 Basic fields

Basic fields generally represent scalar data types with single values, and refer to a single input from the form.

class wtforms.fields.BooleanField(default field arguments, false_values=None)
Represents an <input type="checkbox">. Set the checked-status by using the default-option. Any value
for default, e.g. default="checked" puts checked into the html-element and sets the data to True

Parameters false_values – If provided, a sequence of strings each of which is an exact match
string of what is considered a “false” value. Defaults to the tuple (False, "false", "")

class wtforms.fields.DateField(default field arguments, format='%Y-%m-%d')
Same as DateTimeField , except stores a datetime.date.

class wtforms.fields.DateTimeField(default field arguments, format='%Y-%m-%d %H:%M:%S')
A text field which stores a datetime.datetime matching one or several formats. If format is a list, any input
value matching any format will be accepted, and the first format in the list will be used to produce HTML values.

class wtforms.fields.DateTimeLocalField(default field arguments, format='%Y-%m-%d %H:%M:%S')
Same as DateTimeField , but represents an <input type="datetime-local">.

class wtforms.fields.DecimalField(default field arguments, places=2, rounding=None, use_locale=False,
number_format=None)

A text field which displays and coerces data of the decimal.Decimal type.

Parameters

2.2. Fields 25

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/datetime.html#datetime.datetime

WTForms Documentation (3.1.x), Release 3.1.2

• places – How many decimal places to quantize the value to for display on form. If unset,
use 2 decimal places. If explicitely set to None, does not quantize value.

• rounding – How to round the value during quantize, for example decimal.ROUND_UP. If
unset, uses the rounding value from the current thread’s context.

• use_locale – If True, use locale-based number formatting. Locale-based number format-
ting requires the ‘babel’ package.

• number_format – Optional number format for locale. If omitted, use the default decimal
format for the locale.

class wtforms.fields.DecimalRangeField(default field arguments)
Represents an <input type="range">.

class wtforms.fields.EmailField(default field arguments)
Represents an <input type="email">.

class wtforms.fields.FileField(default field arguments)
Renders a file upload field.

By default, the value will be the filename sent in the form data. WTForms does not deal with frameworks’ file
handling capabilities. A WTForms extension for a framework may replace the filename value with an object
representing the uploaded data.

Example usage:

class UploadForm(Form):
image = FileField('Image File', [validators.regexp('^[^/\\]\.jpg$')])
description = TextAreaField('Image Description')

def validate_image(form, field):
if field.data:

field.data = re.sub(r'[^a-z0-9_.-]', '_', field.data)

def upload(request):
form = UploadForm(request.POST)
if form.image.data:

image_data = request.FILES[form.image.name].read()
open(os.path.join(UPLOAD_PATH, form.image.data), 'w').write(image_data)

class wtforms.fields.MultipleFileField(default field arguments)
A FileField that allows choosing multiple files.

class wtforms.fields.FloatField(default field arguments)
A text field, except all input is coerced to an float. Erroneous input is ignored and will not be accepted as a value.

For the majority of uses, DecimalField is preferable to FloatField, except for in cases where an IEEE float is
absolutely desired over a decimal value.

class wtforms.fields.IntegerField(default field arguments)
A text field, except all input is coerced to an integer. Erroneous input is ignored and will not be accepted as a
value.

class wtforms.fields.IntegerRangeField(default field arguments)
Represents an <input type="range">.

class wtforms.fields.MonthField(default field arguments, format='%Y:%m')
Same as DateField , except represents a month, stores a datetime.date with day = 1.

26 Chapter 2. API

https://docs.python.org/3/library/datetime.html#datetime.date

WTForms Documentation (3.1.x), Release 3.1.2

class wtforms.fields.RadioField(default field arguments, choices=[], coerce=str)
Like a SelectField, except displays a list of radio buttons.

Iterating the field will produce subfields (each containing a label as well) in order to allow custom rendering of
the individual radio fields.

{% for subfield in form.radio %}
<tr>

<td>{{ subfield }}</td>
<td>{{ subfield.label }}</td>

</tr>
{% endfor %}

Simply outputting the field without iterating its subfields will result in a list of radio choices.

class wtforms.fields.SelectField(default field arguments, choices=[], coerce=str, option_widget=None,
validate_choice=True)

Select fields take a choices parameter which is either:

• a list of (value, label) or (value, label, render_kw) tuples. It can also be a list of only values,
in which case the value is used as the label. If set, the render_kw dictionnary will be rendered as HTML
<option> parameters. The value can be of any type, but because form data is sent to the browser as strings,
you will need to provide a coerce function that converts a string back to the expected type.

• a dictionary of {label: list} pairs defining groupings of options.

• a function taking no argument, and returning either a list or a dictionary.

Select fields with static choice values:

class PastebinEntry(Form):
language = SelectField('Programming Language', choices=[('cpp', 'C++'), ('py',

→˓'Python'), ('text', 'Plain Text')])

Note that the choices keyword is only evaluated once, so if you want to make a dynamic drop-down list, you’ll
want to assign the choices list to the field after instantiation. Any submitted choices which are not in the given
choices list will cause validation on the field to fail. If this option cannot be applied to your problem you may
wish to skip choice validation (see below).

Select fields with dynamic choice values:

class UserDetails(Form):
group_id = SelectField('Group', coerce=int)

def edit_user(request, id):
user = User.query.get(id)
form = UserDetails(request.POST, obj=user)
form.group_id.choices = [(g.id, g.name) for g in Group.query.order_by('name')]

Note we didn’t pass a choices to the SelectField constructor, but rather created the list in the view function.
Also, the coerce keyword arg to SelectField says that we use int() to coerce form data. The default coerce
is str().

Coerce function example:

def coerce_none(value):
if value == 'None':

return None
(continues on next page)

2.2. Fields 27

WTForms Documentation (3.1.x), Release 3.1.2

(continued from previous page)

return value

class NonePossible(Form):
my_select_field = SelectField('Select an option', choices=[('1', 'Option 1'), (

→˓'2', 'Option 2'), ('None', 'No option')], coerce=coerce_none)

Note when the option None is selected a ‘None’ str will be passed. By using a coerce function the ‘None’ str will
be converted to None.

Skipping choice validation:

class DynamicSelectForm(Form):
dynamic_select = SelectField("Choose an option", validate_choice=False)

Note the validate_choice parameter - by setting this to False we are telling the SelectField to skip the choice
validation step and instead to accept any inputted choice without checking to see if it was one of the given choices.
This should only really be used in situations where you cannot use dynamic choice values as shown above - for
example where the choices of a SelectField are determined dynamically by another field on the page, such as
choosing a country and state/region.

Advanced functionality

SelectField and its descendants are iterable, and iterating it will produce a list of fields each representing an
option. The rendering of this can be further controlled by specifying option_widget=.

class wtforms.fields.SearchField(default field arguments)
Represents an <input type="search">.

class wtforms.fields.SelectMultipleField(default field arguments, choices=[], coerce=str,
option_widget=None)

No different from a normal select field, except this one can take (and validate) multiple choices. You’ll need to
specify the HTML size attribute to the select field when rendering.

The data on the SelectMultipleField is stored as a list of objects, each of which is checked and coerced from the
form input. Any submitted choices which are not in the given choices list will cause validation on the field to
fail.

class wtforms.fields.SubmitField(default field arguments)
Represents an <input type="submit">. This allows checking if a given submit button has been pressed.

class wtforms.fields.StringField(default field arguments)
This field is the base for most of the more complicated fields, and represents an <input type="text">.

{{ form.username(size=30, maxlength=50) }}

class wtforms.fields.TelField(default field arguments)
Represents an <input type="tel">.

class wtforms.fields.TimeField(default field arguments, format='%H:%M')
Same as DateTimeField , except stores a datetime.time.

class wtforms.fields.URLField(default field arguments)
Represents an <input type="url">.

28 Chapter 2. API

https://docs.python.org/3/library/datetime.html#datetime.time

WTForms Documentation (3.1.x), Release 3.1.2

2.2.4 Convenience Fields

class wtforms.fields.HiddenField(default field arguments)
HiddenField is a convenience for a StringField with a HiddenInput widget.

It will render as an <input type="hidden"> but otherwise coerce to a string.

HiddenField is useful for providing data from a model or the application to be used on the form handler side for
making choices or finding records. Very frequently, CRUD forms will use the hidden field for an object’s id.

Hidden fields are like any other field in that they can take validators and values and be accessed on the form
object. You should consider validating your hidden fields just as you’d validate an input field, to prevent from
malicious people playing with your data.

class wtforms.fields.PasswordField(default field arguments)
A StringField, except renders an <input type="password">.

Also, whatever value is accepted by this field is not rendered back to the browser like normal fields.

class wtforms.fields.TextAreaField(default field arguments)
This field represents an HTML <textarea> and can be used to take multi-line input.

class wtforms.fields.ColorField(default field arguments)
Represents an <input type="color">.

2.2.5 Field Enclosures

Field enclosures allow you to have fields which represent a collection of fields, so that a form can be composed of
multiple re-usable components or more complex data structures such as lists and nested objects can be represented.

class wtforms.fields.FormField(form_class, default field arguments, separator='-')
Encapsulate a form as a field in another form.

Parameters

• form_class – A subclass of Form that will be encapsulated.

• separator – A string which will be suffixed to this field’s name to create the prefix to
enclosed fields. The default is fine for most uses.

FormFields are useful for editing child objects or enclosing multiple related forms on a page which are submitted
and validated together. While subclassing forms captures most desired behaviours, sometimes for reusability or
purpose of combining with FieldList, FormField makes sense.

For example, take the example of a contact form which uses a similar set of three fields to represent telephone
numbers:

class TelephoneForm(Form):
country_code = IntegerField('Country Code', [validators.required()])
area_code = IntegerField('Area Code/Exchange', [validators.required()])
number = StringField('Number')

class ContactForm(Form):
first_name = StringField()
last_name = StringField()
mobile_phone = FormField(TelephoneForm)
office_phone = FormField(TelephoneForm)

2.2. Fields 29

WTForms Documentation (3.1.x), Release 3.1.2

In the example, we reused the TelephoneForm to encapsulate the common telephone entry instead of writing a
custom field to handle the 3 sub-fields. The data property of the mobile_phone field will return the data dict of
the enclosed form. Similarly, the errors property encapsulate the forms’ errors.

class wtforms.fields.FieldList(unbound_field, default field arguments, min_entries=0, max_entries=None,
separator='-')

Encapsulate an ordered list of multiple instances of the same field type, keeping data as a list.

>>> authors = FieldList(StringField('Name', [validators.DataRequired()]))

Parameters

• unbound_field – A partially-instantiated field definition, just like that would be defined on
a form directly.

• min_entries – if provided, always have at least this many entries on the field, creating blank
ones if the provided input does not specify a sufficient amount.

• max_entries – accept no more than this many entries as input, even if more exist in form-
data.

• separator – A string which will be suffixed to this field’s name to create the prefix to
enclosed list entries. The default is fine for most uses.

Note: Due to a limitation in how HTML sends values, FieldList cannot enclose BooleanField or SubmitField
instances.

append_entry([data])
Create a new entry with optional default data.

Entries added in this way will not receive formdata however, and can only receive object data.

pop_entry()
Removes the last entry from the list and returns it.

entries
Each entry in a FieldList is actually an instance of the field you passed in. Iterating, checking the length of,
and indexing the FieldList works as expected, and proxies to the enclosed entries list.

Do not resize the entries list directly, this will result in undefined behavior. See append_entry and pop_entry
for ways you can manipulate the list.

__iter__()

__len__()

__getitem__(index)

FieldList is not limited to enclosing simple fields; and can indeed represent a list of enclosed forms by com-
bining FieldList with FormField:

class IMForm(Form):
protocol = SelectField(choices=[('aim', 'AIM'), ('msn', 'MSN')])
username = StringField()

class ContactForm(Form):
first_name = StringField()
last_name = StringField()
im_accounts = FieldList(FormField(IMForm))

30 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

2.2.6 Custom Fields

While WTForms provides customization for existing fields using widgets and keyword argument attributes, sometimes
it is necessary to design custom fields to handle special data types in your application.

Let’s design a field which represents a comma-separated list of tags:

class TagListField(Field):
widget = TextInput()

def _value(self):
if self.data:

return ', '.join(self.data)
else:

return ''

def process_formdata(self, valuelist):
if valuelist:

self.data = [x.strip() for x in valuelist[0].split(',')]
else:

self.data = []

The _value method is called by the TextInput widget to provide the value that is displayed in the form. Overriding
the process_formdata() method processes the incoming form data back into a list of tags.

Fields With Custom Constructors

Custom fields can also override the default field constructor if needed to provide additional customization:

class BetterTagListField(TagListField):
def __init__(self, label=None, validators=None, remove_duplicates=True, **kwargs):

super(BetterTagListField, self).__init__(label, validators, **kwargs)
self.remove_duplicates = remove_duplicates

def process_formdata(self, valuelist):
super(BetterTagListField, self).process_formdata(valuelist)
if self.remove_duplicates:

self.data = list(self._remove_duplicates(self.data))

@classmethod
def _remove_duplicates(cls, seq):

"""Remove duplicates in a case insensitive, but case preserving manner"""
d = {}
for item in seq:

if item.lower() not in d:
d[item.lower()] = True
yield item

When you override a Field’s constructor, to maintain consistent behavior, you should design your constructor so that:

• You take label=”, validators=None as the first two positional arguments

• Add any additional arguments your field takes as keyword arguments after the label and validators

• Take **kwargs to catch any additional keyword arguments.

2.2. Fields 31

WTForms Documentation (3.1.x), Release 3.1.2

• Call the Field constructor first, passing the first two positional arguments, and all the remaining keyword args.

Considerations for overriding process()

For the vast majority of fields, it is not necessary to override Field.process(). Most of the time, you can achieve
what is needed by overriding process_data and/or process_formdata. However, for special types of fields, such
as form enclosures and other special cases of handling multiple values, it may be needed.

If you are going to override process(), be careful about how you deal with the formdata parameter. For compatibility
with the maximum number of frameworks, we suggest you limit yourself to manipulating formdata in the following
ways only:

• Testing emptiness: if formdata

• Checking for key existence: key in formdata

• Iterating all keys: for key in formdata (note that some wrappers may return multiple instances of the same
key)

• Getting the list of values for a key: formdata.getlist(key).

Most importantly, you should not use dictionary-style access to work with your formdata wrapper, because the behavior
of this is highly variant on the wrapper: some return the first item, others return the last, and some may return a list.

2.2.7 Additional Helper Classes

class wtforms.fields.Flags
Holds a set of flags as attributes.

Accessing a non-existing attribute returns None for its value.

Usage:

>>> flags = Flags()
>>> flags.required = True
>>> 'required' in flags
True
>>> flags.nonexistent
>>> 'nonexistent' in flags
False

class wtforms.fields.Label
On all fields, the label property is an instance of this class. Labels can be printed to yield a <label
for="field_id">Label Text</label> HTML tag enclosure. Similar to fields, you can also call the label
with additional html params.

field_id
The ID of the field which this label will reference.

text
The original label text passed to the field’s constructor.

32 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

2.3 Validators

A validator simply takes an input, verifies it fulfills some criterion, such as a maximum length for a string and returns.
Or, if the validation fails, raises a ValidationError. This system is very simple and flexible, and allows you to chain
any number of validators on fields.

class wtforms.validators.ValidationError(message='', *args, **kwargs)
Raised when a validator fails to validate its input.

class wtforms.validators.StopValidation(message='', *args, **kwargs)
Causes the validation chain to stop.

If StopValidation is raised, no more validators in the validation chain are called. If raised with a message, the
message will be added to the errors list.

2.3.1 Built-in validators

class wtforms.validators.DataRequired(message=None)
Checks the field’s data is ‘truthy’ otherwise stops the validation chain.

This validator checks that the data attribute on the field is a ‘true’ value (effectively, it does if field.data.)
Furthermore, if the data is a string type, a string containing only whitespace characters is considered false.

If the data is empty, also removes prior errors (such as processing errors) from the field.

NOTE this validator used to be called Required but the way it behaved (requiring coerced data, not input data)
meant it functioned in a way which was not symmetric to the Optional validator and furthermore caused confusion
with certain fields which coerced data to ‘falsey’ values like 0, Decimal(0), time(0) etc. Unless a very specific
reason exists, we recommend using the InputRequired instead.

Parameters message – Error message to raise in case of a validation error.

Sets the required attribute on widgets.

This also sets the required flag on fields it is used on. This flag causes the required attribute to be rendered in
the tag, which prevents a request/response cycle for validation. This behavior can be overridden in the following
ways:

• Specifying required=False when rendering in the template.

• Making a custom a widget that doesn’t set it.

• Rendering the novalidate attribute” on the form tag, or the formnovalidate attribute on a submit
button.

The required flag behavior also applies to the InputRequired class.

class wtforms.validators.Email(message=None, granular_message=False, check_deliverability=False,
allow_smtputf8=True, allow_empty_local=False)

Validates an email address. Requires email_validator package to be installed. For ex: pip install wtforms[email].

Parameters

• message – Error message to raise in case of a validation error.

• granular_message – Use validation failed message from email_validator library (Default
False).

• check_deliverability – Perform domain name resolution check (Default False).

• allow_smtputf8 – Fail validation for addresses that would require SMTPUTF8 (Default
True).

2.3. Validators 33

WTForms Documentation (3.1.x), Release 3.1.2

• allow_empty_local – Allow an empty local part (i.e. @example.com), e.g. for validating
Postfix aliases (Default False).

class wtforms.validators.EqualTo(fieldname, message=None)
Compares the values of two fields.

Parameters

• fieldname – The name of the other field to compare to.

• message – Error message to raise in case of a validation error. Can be interpolated with
%(other_label)s and %(other_name)s to provide a more helpful error.

This validator can be used to facilitate in one of the most common scenarios, the password change form:

class ChangePassword(Form):
password = PasswordField('New Password', [InputRequired(), EqualTo('confirm',␣

→˓message='Passwords must match')])
confirm = PasswordField('Repeat Password')

In the example, we use the InputRequired validator to prevent the EqualTo validator from trying to see if the
passwords do not match if there was no passwords specified at all. Because InputRequired stops the validation
chain, EqualTo is not run in the case the password field is left empty.

class wtforms.validators.InputRequired(message=None)
Validates that input was provided for this field.

Note there is a distinction between this and DataRequired in that InputRequired looks that form-input data was
provided, and DataRequired looks at the post-coercion data. This means that this validator only checks whether
non-empty data was sent, not whether non-empty data was coerced from that data. Initially populated data is not
considered sent.

Sets the required attribute on widgets.

This also sets the required flag on fields it is used on. See DataRequired for a description of behavior
regarding this flag.

class wtforms.validators.IPAddress(ipv4=True, ipv6=False, message=None)
Validates an IP address.

Parameters

• ipv4 – If True, accept IPv4 addresses as valid (default True)

• ipv6 – If True, accept IPv6 addresses as valid (default False)

• message – Error message to raise in case of a validation error.

class wtforms.validators.Length(min=- 1, max=- 1, message=None)
Validates the length of a string.

Parameters

• min – The minimum required length of the string. If not provided, minimum length will not
be checked.

• max – The maximum length of the string. If not provided, maximum length will not be
checked.

• message – Error message to raise in case of a validation error. Can be interpolated using
%(min)d and %(max)d if desired. Useful defaults are provided depending on the existence
of min and max.

When supported, sets the minlength and maxlength attributes on widgets.

34 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

class wtforms.validators.MacAddress(message=None)
Validates a MAC address.

Parameters message – Error message to raise in case of a validation error.

class wtforms.validators.NumberRange(min=None, max=None, message=None)
Validates that a number is of a minimum and/or maximum value, inclusive. This will work with any comparable
number type, such as floats and decimals, not just integers.

Parameters

• min – The minimum required value of the number. If not provided, minimum value will not
be checked.

• max – The maximum value of the number. If not provided, maximum value will not be
checked.

• message – Error message to raise in case of a validation error. Can be interpolated using
%(min)s and %(max)s if desired. Useful defaults are provided depending on the existence of
min and max.

When supported, sets the min and max attributes on widgets.

class wtforms.validators.Optional(strip_whitespace=True)
Allows empty input and stops the validation chain from continuing.

If input is empty, also removes prior errors (such as processing errors) from the field.

Parameters strip_whitespace – If True (the default) also stop the validation chain on input which
consists of only whitespace.

Sets the optional attribute on widgets.

This also sets the optional flag on fields it is used on.

class wtforms.validators.Regexp(regex, flags=0, message=None)
Validates the field against a user provided regexp.

Parameters

• regex – The regular expression string to use. Can also be a compiled regular expression
pattern.

• flags – The regexp flags to use, for example re.IGNORECASE. Ignored if regex is not a
string.

• message – Error message to raise in case of a validation error.

class wtforms.validators.URL(require_tld=True, allow_ip=True, message=None)
Simple regexp based url validation. Much like the email validator, you probably want to validate the url later by
other means if the url must resolve.

Parameters

• require_tld – If true, then the domain-name portion of the URL must contain a .tld suffix.
Set this to false if you want to allow domains like localhost.

• allow_ip – If false, then give ip as host will fail validation

• message – Error message to raise in case of a validation error.

class wtforms.validators.UUID(message=None)
Validates a UUID.

Parameters message – Error message to raise in case of a validation error.

2.3. Validators 35

WTForms Documentation (3.1.x), Release 3.1.2

class wtforms.validators.AnyOf(values, message=None, values_formatter=None)
Compares the incoming data to a sequence of valid inputs.

Parameters

• values – A sequence of valid inputs.

• message – Error message to raise in case of a validation error. %(values)s contains the list
of values.

• values_formatter – Function used to format the list of values in the error message.

class wtforms.validators.NoneOf(values, message=None, values_formatter=None)
Compares the incoming data to a sequence of invalid inputs.

Parameters

• values – A sequence of invalid inputs.

• message – Error message to raise in case of a validation error. %(values)s contains the list
of values.

• values_formatter – Function used to format the list of values in the error message.

class wtforms.validators.ReadOnly
Set a field readonly.

Validation fails if the form data is different than the field object data, or if unset, from the field default data.

class wtforms.validators.Disabled
Set a field disabled.

Validation fails if the form data has any value.

2.3.2 Custom validators

We will step through the evolution of writing a length-checking validator similar to the built-in Length validator,
starting from a case-specific one to a generic reusable validator.

Let’s start with a simple form with a name field and its validation:

class MyForm(Form):
name = StringField('Name', [InputRequired()])

def validate_name(form, field):
if len(field.data) > 50:

raise ValidationError('Name must be less than 50 characters')

Above, we show the use of an in-line validator to do validation of a single field. In-line validators are good for validating
special cases, but are not easily reusable. If, in the example above, the name field were to be split into two fields for
first name and surname, you would have to duplicate your work to check two lengths.

So let’s start on the process of splitting the validator out for re-use:

def my_length_check(form, field):
if len(field.data) > 50:

raise ValidationError('Field must be less than 50 characters')

class MyForm(Form):
name = StringField('Name', [InputRequired(), my_length_check])

36 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

All we’ve done here is move the exact same code out of the class and as a function. Since a validator can be any callable
which accepts the two positional arguments form and field, this is perfectly fine, but the validator is very special-cased.

Instead, we can turn our validator into a more powerful one by making it a factory which returns a callable:

def length(min=-1, max=-1):
message = 'Must be between %d and %d characters long.' % (min, max)

def _length(form, field):
l = field.data and len(field.data) or 0
if l < min or max != -1 and l > max:

raise ValidationError(message)

return _length

class MyForm(Form):
name = StringField('Name', [InputRequired(), length(max=50)])

Now we have a configurable length-checking validator that handles both minimum and maximum lengths. When
length(max=50) is passed in your validators list, it returns the enclosed _length function as a closure, which is used
in the field’s validation chain.

This is now an acceptable validator, but we recommend that for reusability, you use the pattern of allowing the error
message to be customized via passing a message= parameter:

class Length(object):
def __init__(self, min=-1, max=-1, message=None):

self.min = min
self.max = max
if not message:

message = 'Field must be between %i and %i characters long.' % (min, max)
self.message = message

def __call__(self, form, field):
l = field.data and len(field.data) or 0
if l < self.min or self.max != -1 and l > self.max:

raise ValidationError(self.message)

length = Length

In addition to allowing the error message to be customized, we’ve now converted the length validator to a class. This
wasn’t necessary, but we did this to illustrate how one would do so. Because fields will accept any callable as a validator,
callable classes are just as applicable. For complex validators, or using inheritance, you may prefer this.

We aliased the Length class back to the original length name in the above example. This allows you to keep API
compatibility as you move your validators from factories to classes, and thus we recommend this for those writing
validators they will share.

2.3. Validators 37

WTForms Documentation (3.1.x), Release 3.1.2

Setting flags on the field with validators

Sometimes, it’s useful to know if a validator is present on a given field, like for use in template code. To do this,
validators are allowed to specify flags which will then be available on the field's flags object. Some of the
built-in validators such as Required already do this.

To specify flags on your validator, set the field_flags attribute on your validator. When the Field is constructed, the
flags with the same name will be set on your field. For example, let’s imagine a validator that validates that input is
valid BBCode. We can set a flag on the field then to signify that the field accepts BBCode:

class implementation
class ValidBBCode(object):

def __init__(self):
self.field_flags = {'accepts_bbcode': True}

factory implementation
def valid_bbcode():

def _valid_bbcode(form, field):
pass # validator implementation here

_valid_bbcode.field_flags = {'accepts_bbcode': True}
return _valid_bbcode

Then we can check it in our template, so we can then place a note to the user:

{{ field(rows=7, cols=70) }}
{% if field.flags.accepts_bbcode %}

<div class="note">This field accepts BBCode formatting as input.</div>
{% endif %}

Some considerations on using flags:

• Boolean flags will set HTML valueless attributes (e.g. {required: True} will give <input type=”text” re-
quired>). Other flag types will set regular HTML attributes (e.g. {maxlength: 8} will give <input type=”text”
maxlength=”8”>).

• If multiple validators set the same flag, the flag will have the value set by the first validator.

• Flags are set from validators only in Field.__init__(), so inline validators and extra passed-in validators
cannot set them.

2.4 Widgets

Widgets are classes whose purpose are to render a field to its usable representation, usually XHTML. When a field is
called, the default behaviour is to delegate the rendering to its widget. This abstraction is provided so that widgets can
easily be created to customize the rendering of existing fields.

Note All built-in widgets will return upon rendering a “HTML-safe” unicode string subclass that many templating
frameworks (Jinja, Mako, Genshi) will recognize as not needing to be auto-escaped.

38 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

2.4.1 Built-in widgets

class wtforms.widgets.ColorInput(input_type=None)
Renders an input with type “color”.

class wtforms.widgets.CheckboxInput(input_type=None)
Render a checkbox.

The checked HTML attribute is set if the field’s data is a non-false value.

class wtforms.widgets.DateTimeInput(input_type=None)
Renders an input with type “datetime”.

class wtforms.widgets.DateTimeLocalInput(input_type=None)
Renders an input with type “datetime-local”.

class wtforms.widgets.DateInput(input_type=None)
Renders an input with type “date”.

class wtforms.widgets.EmailInput(input_type=None)
Renders an input with type “email”.

class wtforms.widgets.FileInput(multiple=False)
Render a file chooser input.

Parameters multiple – allow choosing multiple files

class wtforms.widgets.HiddenInput(*args, **kwargs)
Render a hidden input.

class wtforms.widgets.Input(input_type=None)
Render a basic <input> field.

This is used as the basis for most of the other input fields.

By default, the _value() method will be called upon the associated field to provide the value= HTML attribute.

class wtforms.widgets.ListWidget(html_tag='ul', prefix_label=True)
Renders a list of fields as a ul or ol list.

This is used for fields which encapsulate many inner fields as subfields. The widget will try to iterate the field to
get access to the subfields and call them to render them.

If prefix_label is set, the subfield’s label is printed before the field, otherwise afterwards. The latter is useful for
iterating radios or checkboxes.

class wtforms.widgets.MonthInput(input_type=None)
Renders an input with type “month”.

class wtforms.widgets.NumberInput(step=None, min=None, max=None)
Renders an input with type “number”.

class wtforms.widgets.PasswordInput(hide_value=True)
Render a password input.

For security purposes, this field will not reproduce the value on a form submit by default. To have the value filled
in, set hide_value to False.

class wtforms.widgets.RadioInput(input_type=None)
Render a single radio button.

This widget is most commonly used in conjunction with ListWidget or some other listing, as singular radio
buttons are not very useful.

2.4. Widgets 39

WTForms Documentation (3.1.x), Release 3.1.2

class wtforms.widgets.RangeInput(step=None)
Renders an input with type “range”.

class wtforms.widgets.SubmitInput(input_type=None)
Renders a submit button.

The field’s label is used as the text of the submit button instead of the data on the field.

class wtforms.widgets.SearchInput(input_type=None)
Renders an input with type “search”.

class wtforms.widgets.Select(multiple=False)
Renders a select field.

If multiple is True, then the size property should be specified on rendering to make the field useful.

The field must provide an iter_choices() method which the widget will call on rendering; this method must yield
tuples of (value, label, selected) or (value, label, selected, render_kw). It also must provide a has_groups()
method which tells whether choices are divided into groups, and if they do, the field must have an iter_groups()
method that yields tuples of (label, choices), where choices is a iterable of (value, label, selected) tuples.

class wtforms.widgets.TableWidget(with_table_tag=True)
Renders a list of fields as a set of table rows with th/td pairs.

If with_table_tag is True, then an enclosing <table> is placed around the rows.

Hidden fields will not be displayed with a row, instead the field will be pushed into a subsequent table row to
ensure XHTML validity. Hidden fields at the end of the field list will appear outside the table.

class wtforms.widgets.TelInput(input_type=None)
Renders an input with type “tel”.

class wtforms.widgets.TextArea
Renders a multi-line text area.

rows and cols ought to be passed as keyword args when rendering.

class wtforms.widgets.TextInput(input_type=None)
Render a single-line text input.

class wtforms.widgets.TimeInput(input_type=None)
Renders an input with type “time”.

class wtforms.widgets.URLInput(input_type=None)
Renders an input with type “url”.

class wtforms.widgets.WeekInput(input_type=None)
Renders an input with type “week”.

2.4.2 Widget-Building Utilities

These utilities are used in WTForms widgets to help render HTML and also in order to work along with HTML
templating frameworks. They can be imported for use in building custom widgets as well.

wtforms.widgets.html_params(**kwargs)
Generate HTML attribute syntax from inputted keyword arguments.

The output value is sorted by the passed keys, to provide consistent output each time this function is called with
the same parameters. Because of the frequent use of the normally reserved keywords class and for, suffixing
these with an underscore will allow them to be used.

In order to facilitate the use of data- and aria- attributes, if the name of the attribute begins with data_ or
aria_, then every underscore will be replaced with a hyphen in the generated attribute.

40 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

>>> html_params(data_attr='user.name', aria_labeledby='name')
'data-attr="user.name" aria-labeledby="name"'

In addition, the values True and False are special:

• attr=True generates the HTML compact output of a boolean attribute, e.g. checked=True will
generate simply checked

• attr=False will be ignored and generate no output.

>>> html_params(name='text1', id='f', class_='text')
'class="text" id="f" name="text1"'
>>> html_params(checked=True, readonly=False, name="text1", abc="hello")
'abc="hello" checked name="text1"'

Changed in version 3.0: aria_ args convert underscores to hyphens like data_ args.

Changed in version 2.2: data_ args convert all underscores to hyphens, instead of only the first one.

WTForms uses MarkupSafe to escape unsafe HTML characters before rendering. You can mark a string using
markupsafe.Markup to indicate that it should not be escaped.

2.4.3 Custom widgets

Widgets, much like validators, provide a simple callable contract. Widgets can take customization arguments through a
constructor if needed as well. When the field is called or printed, it will call the widget with itself as the first argument
and then any additional arguments passed to its caller as keywords. Passing the field is done so that one instance of a
widget might be used across many field instances.

Let’s look at a widget which renders a text field with an additional class if there are errors:

class MyTextInput(TextInput):
def __init__(self, error_class='has_errors'):

super(MyTextInput, self).__init__()
self.error_class = error_class

def __call__(self, field, **kwargs):
if field.errors:

c = kwargs.pop('class', '') or kwargs.pop('class_', '')
kwargs['class'] = '%s %s' % (self.error_class, c)

return super(MyTextInput, self).__call__(field, **kwargs)

In the above example, we extended the behavior of the existing TextInput widget to append a CSS class as needed.
However, widgets need not extend from an existing widget, and indeed don’t even have to be a class. For example, here
is a widget that renders a SelectMultipleField as a collection of checkboxes:

def select_multi_checkbox(field, ul_class='', **kwargs):
kwargs.setdefault('type', 'checkbox')
field_id = kwargs.pop('id', field.id)
html = ['<ul %s>' % html_params(id=field_id, class_=ul_class)]
for value, label, checked, render_kw in field.iter_choices():

choice_id = '%s-%s' % (field_id, value)
options = dict(kwargs, name=field.name, value=value, id=choice_id)
if checked:

(continues on next page)

2.4. Widgets 41

https://markupsafe.palletsprojects.com/

WTForms Documentation (3.1.x), Release 3.1.2

(continued from previous page)

options['checked'] = 'checked'
html.append('<input %s /> ' % html_params(**options))
html.append('<label for="%s">%s</label>' % (choice_id, label))

html.append('')
return ''.join(html)

class TestForm(Form):
tester = SelectMultipleField(choices=my_choices, widget=select_multi_checkbox)

2.5 class Meta

the class Meta paradigm allows WTForms features to be customized, and even new behaviors to be introduced. It also
supplies a place where configuration for any complementary modules can be done.

Typical usage looks something like:

class MyForm(Form):
class Meta:

csrf = True
locales = ('en_US', 'en')

name = StringField(...)
and so on...

For the majority of users, using a class Meta is mostly going to be done for customizing options used by the default
behaviors, however for completeness the entire API of the Meta interface is shown here.

class wtforms.meta.DefaultMeta
This is the default Meta class which defines all the default values and therefore also the ‘API’ of the class Meta
interface.

Configuration

csrf = False
Setting csrf to True will enable CSRF for the form. The value can also be overridden per-instance via
instantiation-time customization (for example, if csrf needs to be turned off only in a special case)

form = MyForm(request.form, meta={'csrf': False})

csrf_class = None
If set, this is a class which is used to implement CSRF protection. Read the CSRF Documentation to get
more information on how to use.

csrf_field_name = 'csrf_token'
The name of the automatically added CSRF token field.

locales = False
Setting to a sequence of strings specifies the priority order of locales to try to find translations for built-in
messages of WTForms.

If the value is False, then strings are not translated (the translations provider is replaced with a dummy
provider)

example:

42 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

locales = ('fr_FR', 'fr')

Also see Internationalization (i18n) for more information.

cache_translations = True
If True (the default) then cache translation objects. The default cache is done at class-level so it’s shared
with all class Meta.

Advanced Customization

Usually, you do not need to override these methods, as they provide core behaviors of WTForms.

build_csrf(form)
Build a CSRF implementation. This is called once per form instance.

The default implementation builds the class referenced to by csrf_class with zero arguments. If
csrf_class is None, will instead use the default implementation wtforms.csrf.session.SessionCSRF.

Parameters form – The form.

Returns A CSRF implementation.

get_translations(form)
Override in subclasses to provide alternate translations factory. See the i18n documentation for more.

Parameters form – The form.

Returns An object that provides gettext() and ngettext() methods.

bind_field(form, unbound_field, options)
bind_field allows potential customization of how fields are bound.

The default implementation simply passes the options to UnboundField.bind().

Parameters

• form – The form.

• unbound_field – The unbound field.

• options – A dictionary of options which are typically passed to the field.

Returns A bound field

wrap_formdata(form, formdata)
wrap_formdata allows doing custom wrappers of WTForms formdata.

The default implementation detects webob-style multidicts and wraps them, otherwise passes formdata
back un-changed.

Parameters

• form – The form.

• formdata – Form data.

Returns A form-input wrapper compatible with WTForms.

render_field(field, render_kw)
render_field allows customization of how widget rendering is done.

The default implementation calls field.widget(field, **render_kw)

2.5. class Meta 43

WTForms Documentation (3.1.x), Release 3.1.2

2.6 CSRF Protection

The CSRF package includes tools that help you implement checking against cross-site request forgery (“csrf”). Due
to the large number of variations on approaches people take to CSRF (and the fact that many make compromises) the
base implementation allows you to plug in a number of CSRF validation approaches.

CSRF implementations are made by subclassing CSRF. For utility, we have provided one possible CSRF implementation
in the package that can be used with many frameworks for session-based hash secure keying, SessionCSRF.

2.6.1 Using CSRF

CSRF in WTForms 2.0 is now driven through a number of variables on class Meta. After choosing a CSRF imple-
mentation, import it and configure it on the class Meta of a subclass of Form like such:

from somemodule import SomeCSRF

class MyBaseForm(Form):
class Meta:

csrf = True # Enable CSRF
csrf_class = SomeCSRF # Set the CSRF implementation
csrf_secret = b'foobar' # Some implementations need a secret key.
Any other CSRF settings here.

And once you’ve got this set up, you can define your forms as a subclass of MyBaseForm:

class UserForm(MyBaseForm):
name = StringField()
age = IntegerField()

def view():
form = UserForm(request.POST)
if request.POST and form.validate():

pass # Form is valid and CSRF succeeded

return render('user.html', form=form)

There is a special field inside the CSRF form (called csrf_token by default) which you need to make sure you render
in your template:

<form action="/user" method="POST">
{{ form.csrf_token }}
{% if form.csrf_token.errors %}

<div class="warning">You have submitted an invalid CSRF token</div>
{% endif %}
<div>{{ form.name }} {{ form.name.label }}</div>
<div>{{ form.age }}{{ form.age.label }}</div>

Remember, with the class Meta you can always override variables in a sub-class or at the constructor for special-cases:

class SearchForm(MyBaseForm):
"""
We expect search queries to come externally, thus we don't want CSRF
even though it's set up on the base form.

(continues on next page)

44 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

(continued from previous page)

"""
class Meta:

This overrides the value from the base form.
csrf = False

2.6.2 How WTForms CSRF works

Most CSRF implementations hinge around creating a special token, which is put in a hidden field on the form named
csrf_token, which must be rendered in your template to be passed from the browser back to your view. There are many
different methods of generating this token, but they are usually the result of a cryptographic hash function against some
data which would be hard to forge.

class wtforms.csrf.core.CSRFTokenField(*args, **kwargs)
A subclass of HiddenField designed for sending the CSRF token that is used for most CSRF protection schemes.

Notably different from a normal field, this field always renders the current token regardless of the submitted
value, and also will not be populated over to object data via populate_obj

__init__(*args, **kw)
Construct a new field.

Parameters

• label – The label of the field.

• validators – A sequence of validators to call when validate is called.

• filters – A sequence of callable which are run by process() to filter or transform the
input data. For example StringForm(filters=[str.strip, str.upper]). Note that
filters are applied after processing the default and incoming data, but before validation.

• description – A description for the field, typically used for help text.

• id – An id to use for the field. A reasonable default is set by the form, and you shouldn’t
need to set this manually.

• default – The default value to assign to the field, if no form or object input is provided.
May be a callable.

• widget – If provided, overrides the widget used to render the field.

• render_kw (dict) – If provided, a dictionary which provides default keywords that will
be given to the widget at render time.

• name – The HTML name of this field. The default value is the Python attribute name.

• _form – The form holding this field. It is passed by the form itself during construction.
You should never pass this value yourself.

• _prefix – The prefix to prepend to the form name of this field, passed by the enclosing
form during construction.

• _translations – A translations object providing message translations. Usually passed
by the enclosing form during construction. See I18n docs for information on message
translations.

• _meta – If provided, this is the ‘meta’ instance from the form. You usually don’t pass this
yourself.

2.6. CSRF Protection 45

https://docs.python.org/3/library/stdtypes.html#dict

WTForms Documentation (3.1.x), Release 3.1.2

If _form isn’t provided, an UnboundField will be returned instead. Call its bind() method with a form
instance and a name to construct the field.

current_token = None

_value()
We want to always return the current token on render, regardless of whether a good or bad token was passed.

populate_obj(*args)
Don’t populate objects with the CSRF token

pre_validate(form)
Handle validation of this token field.

process(*args, **kwargs)
Process incoming data, calling process_data, process_formdata as needed, and run filters.

If data is not provided, process_data will be called on the field’s default.

Field subclasses usually won’t override this, instead overriding the process_formdata and process_data
methods. Only override this for special advanced processing, such as when a field encapsulates many
inputs.

Parameters extra_filters – A sequence of extra filters to run.

class wtforms.csrf.core.CSRF

setup_form(form)
Receive the form we’re attached to and set up fields.

The default implementation creates a single field of type field_class with name taken from the
csrf_field_name of the class meta.

Parameters form – The form instance we’re attaching to.

Returns A sequence of (field_name, unbound_field) 2-tuples which are unbound fields to be
added to the form.

generate_csrf_token(csrf_token_field)
Implementations must override this to provide a method with which one can get a CSRF token for this form.

A CSRF token is usually a string that is generated deterministically based on some sort of user data, though
it can be anything which you can validate on a subsequent request.

Parameters csrf_token_field – The field which is being used for CSRF.

Returns A generated CSRF string.

validate_csrf_token(form, field)
Override this method to provide custom CSRF validation logic.

The default CSRF validation logic simply checks if the recently generated token equals the one we received
as formdata.

Parameters

• form – The form which has this CSRF token.

• field – The CSRF token field.

field_class = <class 'wtforms.csrf.core.CSRFTokenField'>
The class of the token field we’re going to construct. Can be overridden in subclasses if need be.

46 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

2.6.3 Creating your own CSRF implementation

Here we will sketch out a simple theoretical CSRF implementation which generates a hash token based on the user’s
IP.

Note This is a simplistic example meant to illustrate creating a CSRF implementation. This isn’t recommended to be
used in production because the token is deterministic and non-changing per-IP, which means this isn’t the most secure
implementation of CSRF.

First, let’s create our CSRF class:

from wtforms.csrf.core import CSRF
from hashlib import md5

SECRET_KEY = '1234567890'

class IPAddressCSRF(CSRF):
"""
Generate a CSRF token based on the user's IP. I am probably not very
secure, so don't use me.
"""
def setup_form(self, form):

self.csrf_context = form.meta.csrf_context
return super(IPAddressCSRF, self).setup_form(form)

def generate_csrf_token(self, csrf_token):
token = md5(SECRET_KEY + self.csrf_context).hexdigest()
return token

def validate_csrf_token(self, form, field):
if field.data != field.current_token:

raise ValueError('Invalid CSRF')

Now that we have this taken care of, let’s write a simple form and view which would implement this:

class RegistrationForm(Form):
class Meta:

csrf = True
csrf_class = IPAddressCSRF

name = StringField('Your Name')
email = StringField('Email', [validators.email()])

def register(request):
form = RegistrationForm(

request.POST,
meta={'csrf_context': request.ip}

)

if request.method == 'POST' and form.validate():
pass # We're all good, create a user or whatever it is you do

elif form.csrf_token.errors:
pass # If we're here we suspect the user of cross-site request forgery

else:
pass # Any other errors

(continues on next page)

2.6. CSRF Protection 47

WTForms Documentation (3.1.x), Release 3.1.2

(continued from previous page)

return render('register.html', form=form)

And finally, a simple template:

<form action="register" method="POST">
{{ form.csrf_token }}
<p>{{ form.name.label }}: {{ form.name }}</p>
<p>{{ form.email.label }}: {{ form.email }}</p>
<input type="submit" value="Register">

</form>

Please note that implementing CSRF detection is not fool-proof, and even with the best CSRF protection implemen-
tation, it’s possible for requests to be forged by expert attackers. However, a good CSRF protection would make it
infeasible for someone from an external site to hijack a form submission from another user and perform actions as them
without additional a priori knowledge.

In addition, it’s important to understand that very often, the more strict the CSRF protection, the higher the chance of
false positives occurring (ie, legitimate users getting blocked by your CSRF protection) and choosing a CSRF imple-
mentation is actually a matter of compromise. We will attempt to provide a handful of usable reference algorithms
built in to this library in the future, to allow that choice to be easy.

Some tips on criteria people often examine when evaluating CSRF implementations:

• Reproducability If a token is based on attributes about the user, it gains the advantage that one does not need
secondary storage in which to store the value between requests. However, if the same attributes can be reproduced
by an attacker, then the attacker can potentially forge this information.

• Reusability. It might be desired to make a completely different token every use, and disallow users from re-
using past tokens. This is an extremely powerful protection, but can have consequences on if the user uses the
back button (or in some cases runs forms simultaneously in multiple browser tabs) and submits an old token, or
otherwise. A possible compromise is to allow reusability in a time window (more on that later).

• Time Ranges Many CSRF approaches use time-based expiry to make sure that a token cannot be (re)used beyond
a certain point. Care must be taken in choosing the time criteria for this to not lock out legitimate users. For
example, if a user might walk away while filling out a long-ish form, or to go look for their credit card, the time for
expiry should take that into consideration to provide a balance between security and limiting user inconvenience.

• Requirements Some CSRF-prevention methods require the use of browser cookies, and some even require client-
side scripting support. The webmaster implementing the CSRF needs to consider that such requirements (though
effective) may lock certain legitimate users out, and make this determination whether it is a good idea to use. For
example, for a site already using cookies for login, adding another for CSRF isn’t as big of a deal, but for other
sites it may not be feasible.

2.6.4 Session-based CSRF implementation

A provided CSRF implementation which puts CSRF data in a session.

This can be used fairly comfortably with many request.session type objects, including the Werkzeug/Flask session
store, Django sessions, and potentially other similar objects which use a dict-like API for storing session keys.

The basic concept is a randomly generated value is stored in the user’s session, and an hmac-sha1 of it (along with an
optional expiration time, for extra security) is used as the value of the csrf_token. If this token validates with the hmac
of the random value + expiration time, and the expiration time is not passed, the CSRF validation will pass.

class wtforms.csrf.session.SessionCSRF
Meta Values

48 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

• csrf_secret A byte string which is the master key by which we encode all values. Set to a sufficiently
long string of characters that is difficult to guess or bruteforce (recommended at least 16 characters) for
example the output of os.urandom(16).

• csrf_time_limit if None, tokens last forever (not recommended.) Otherwise, set to a datetime.
timedelta that will define how long CSRF tokens are valid for. Defaults to 30 minutes.

• csrf_context This should be a request.session-style object. Usually given in the Form constructor.

Example

from wtforms.csrf.session import SessionCSRF
from datetime import timedelta

class MyBaseForm(Form):
class Meta:

csrf = True
csrf_class = SessionCSRF
csrf_secret = b'EPj00jpfj8Gx1SjnyLxwBBSQfnQ9DJYe0Ym'
csrf_time_limit = timedelta(minutes=20)

class Registration(MyBaseForm):
name = StringField()

def view(request):
form = Registration(request.POST, meta={'csrf_context': request.session})
rest of view here

Note that request.session is passed as the csrf_context override to the meta info, this is so that the CSRF token can
be stored in your session for comparison on a later request.

Example Integration

WTForms primitives are designed to work with a large variety of frameworks, and as such sometimes things seem like
they are more work to use, but with some smart integration, you can actually clean up your code substantially.

For example, if you were going to integrate with Flask, and wanted to use the SessionCSRF implementation, here’s
one way to get the CSRF context to be available without passing it all the time:

from flask import session
from wtforms.csrf.session import SessionCSRF

class MyBaseForm(Form):
class Meta:

csrf = True
csrf_class = SessionCSRF
csrf_secret = app.config['CSRF_SECRET_KEY']

@property
def csrf_context(self):

return session

Now with any subclasses of MyBaseForm, you don’t need to pass in the csrf context, and on top of that, we grab the
secret key out of your normal app configuration.

2.6. CSRF Protection 49

https://flask.palletsprojects.com/

WTForms Documentation (3.1.x), Release 3.1.2

2.7 Internationalization (i18n)

Localizing strings in WTForms is a topic that frequently comes up. In WTForms, the majority of messages that are
transmitted are provided by you, the user. However, there is support for translating some of the built-in messages in
WTForms (such as errors which occur during data coercion) so that the user can make sure the user experience is
consistent.

2.7.1 Translating user-provided messages

This is not actually any specific feature in WTForms, but because the question is asked so frequently, we need to address
it here: WTForms does -not- translate any user-provided strings.

This is not to say they can’t be translated, but that it’s up to you to deal with providing a translation for any passed-in
messages. WTForms waits until the last moment (usually validation time) before doing anything with the passed in
message (such as interpolating strings) thus giving you the opportunity to e.g. change your locale before validation
occurs, if you are using a suitable “lazy proxy”.

Here’s a simple example of how one would provide translated strings to WTForms:

from somelibrary import ugettext_lazy as _
from wtforms import Form, StringField, IntegerField, validators as v

class RegistrationForm(Form):
name = StringField(_('Name'), [v.InputRequired(_('Please provide your name'))])
age = IntegerField(

_('Age'),
[v.NumberRange(min=12, message=_('Must be at least %(min)d years old.'))]

)

The field label is left un-perturbed until rendering time in a template, so you can easily provide translations for field
labels if so desired. In addition, validator messages with format strings are not interpolated until the validation is run,
so you can provide localization there as well.

2.7.2 Translating built-in messages

There are some messages in WTForms which are provided by the framework, namely default validator messages and
errors occurring during the processing (data coercion) stage. For example, in the case of the IntegerField above, if
someone entered a value which was not valid as an integer, then a message like “Not a valid integer value” would be
displayed.

Using the built-in translations provider

WTForms now includes a basic translations provider which uses the stdlib gettext module to localize strings based on
locale information distributed with the package. Localizations for several languages are included, and we hope that
soon there will be more submitted.

To use the builtin translations provider, simply pass locale languages as locales in the meta section of the constructor
of your form:

form = MyForm(request.form, meta={'locales': ['en_US', 'en']})

Alternately, if you are localizing application-wide you can define locales at meta-level in a subclass of Form:

50 Chapter 2. API

WTForms Documentation (3.1.x), Release 3.1.2

class MyBaseForm(Form):
class Meta:

locales = ['es_ES', 'es']

Now simply have all your forms be a subclass of MyBaseForm and you will have all your default messages output in
spanish.

Writing your own translations provider

For this case, we provide the ability to give a translations object on a subclass of Form, which will then be called to
translate built-in strings.

An example of writing a simple translations object:

from mylibrary import ugettext, ungettext
from wtforms import Form

class MyTranslations(object):
def gettext(self, string):

return ugettext(string)

def ngettext(self, singular, plural, n):
return ungettext(singular, plural, n)

class MyBaseForm(Form):
class Meta:

def get_translations(self, form):
return MyTranslations()

You would then use this new base Form class as the base class for any forms you create, and any built-in messages from
WTForms will be passed to your gettext/ngettext implementations.

You control the object’s constructor, its lifecycle, and everything else about it, so you could, for example, pass the locale
per-form instantiation to the translation object’s constructor, and anything else you need to do for translations to work
for you.

2.7. Internationalization (i18n) 51

WTForms Documentation (3.1.x), Release 3.1.2

52 Chapter 2. API

CHAPTER

THREE

INFORMATION

3.1 Changes

3.1.1 Version 3.1.2

Released 2024-01-06

• Fix SelectMultipleField value coercion on validation. #822 #823

3.1.2 Version 3.1.1

Released 2023-11-01

• Display Flags values in their repr. #808

• SelectField and SelectMultipleField choices can be None if validate_choice is False #809

• Documentation improvements #812 #815 #817

• Unit tests improvements #813

• Python 3.12 support #818

• Restored support for 3-items tuple return value from iter_choices #816

3.1.3 Version 3.1.0

Released 2023-10-10

• Documentation improvements #726 #733 #749 #767 #788 #789 #793

• Translation improvements #732 #734 #754

• Implement ColorField #755

• Delayed import of email_validator. #727

• <option> attributes can be passed by the SelectField choices parameter #692 #739. breaking change:
iter_choices now returns a tuple of 4 items

• Use the standard datetime formats by default for DateTimeLocalField #761

• Python 3.11 support #763

• Added shorter format to DateTimeLocalField defaults #761

• Stop support for python 3.7 #794

53

https://github.com/wtforms/wtforms/issues/822
https://github.com/wtforms/wtforms/pull/823
https://github.com/wtforms/wtforms/pull/808
https://github.com/wtforms/wtforms/pull/809
https://github.com/wtforms/wtforms/pull/812
https://github.com/wtforms/wtforms/pull/815
https://github.com/wtforms/wtforms/pull/817
https://github.com/wtforms/wtforms/pull/813
https://github.com/wtforms/wtforms/pull/818
https://github.com/wtforms/wtforms/pull/816
https://github.com/wtforms/wtforms/pull/726
https://github.com/wtforms/wtforms/pull/733
https://github.com/wtforms/wtforms/pull/749
https://github.com/wtforms/wtforms/pull/767
https://github.com/wtforms/wtforms/pull/788
https://github.com/wtforms/wtforms/pull/789
https://github.com/wtforms/wtforms/pull/793
https://github.com/wtforms/wtforms/pull/732
https://github.com/wtforms/wtforms/pull/734
https://github.com/wtforms/wtforms/pull/754
https://github.com/wtforms/wtforms/pull/755
https://github.com/wtforms/wtforms/issues/727
https://github.com/wtforms/wtforms/issues/692
https://github.com/wtforms/wtforms/pull/739
https://github.com/wtforms/wtforms/pull/761
https://github.com/wtforms/wtforms/pull/763
https://github.com/wtforms/wtforms/pull/761
https://github.com/wtforms/wtforms/pull/794

WTForms Documentation (3.1.x), Release 3.1.2

• Added shorter format to WeekField defaults #765

• Move to pyproject.toml #796

• URL validator takes a allow_ip parameter #800

• Implement ReadOnly and Disabled :pr:`788

3.1.4 Version 3.0.1

Released 2021-12-23

• Fixed DateTimeField and other similar fields can handle multiple formats. #720 #721

• Stop support for python 3.6 #722

3.1.5 Version 3.0.0

Released 2021-11-07

• Fixed RadioField validators. #477 #615

• populate_obj() always calls setattr() #675

• WTForms has a new logo. #569 #689

• Fixed RadioField render_kw rendering. #490 #628 #688

• Support for optgroups in SelectField and SelectMultipleField . #656 #667

• Minor documentation fix. #701

• Custom separators for FieldList. #681 #694

• DateTimeField , DateField and TimeField support time formats that removes leading zeros. #703

• Refactoring: split fields/core.py and fields/simple.py #710

3.1.6 Version 3.0.0a1

Released 2020-11-23

• Drop support for Python < 3.6. #554

• StringField sets data to None when form data is empty and an initial value was not provided. Although it
previously set an empty string, None is consistent with the behavior of other fields. #355

• Specified version of Babel required for setup to avoid errors. #430

• Replaced use of getattr/setattr with regular variable access. #482

• ValueError raised by a validator are handled like regular exceptions. Validators need to raise
ValidationError or StopValidation to make a validation fail. #445

• SelectField , SelectMultipleField and RadioField choices parameter can be a callable. #608

• Choices shortcut for SelectMultipleField. #603 #605

• Forms can have form-level errors. #55 #595

• Implemented MonthField. #530 #593

• Filters can be inline. form.BaseForm.process() takes a extra_filters parameter. #128 #592

54 Chapter 3. Information

https://github.com/wtforms/wtforms/pull/765
https://github.com/wtforms/wtforms/pull/796
https://github.com/wtforms/wtforms/pull/800
https://github.com/wtforms/wtforms/issues/720
https://github.com/wtforms/wtforms/pull/721
https://github.com/wtforms/wtforms/pull/722
https://github.com/wtforms/wtforms/issues/477
https://github.com/wtforms/wtforms/pull/615
https://docs.python.org/3/library/functions.html#setattr
https://github.com/wtforms/wtforms/pull/675
https://github.com/wtforms/wtforms/issues/569
https://github.com/wtforms/wtforms/pull/689
https://github.com/wtforms/wtforms/issues/490
https://github.com/wtforms/wtforms/pull/628
https://github.com/wtforms/wtforms/pull/688
https://github.com/wtforms/wtforms/issues/656
https://github.com/wtforms/wtforms/pull/667
https://github.com/wtforms/wtforms/issues/701
https://github.com/wtforms/wtforms/issues/681
https://github.com/wtforms/wtforms/pull/694
https://github.com/wtforms/wtforms/pull/703
https://github.com/wtforms/wtforms/pull/710
https://github.com/wtforms/wtforms/pull/554
https://github.com/wtforms/wtforms/pull/355
https://github.com/wtforms/wtforms/pull/430
https://github.com/wtforms/wtforms/issues/482
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/wtforms/wtforms/issues/445
https://github.com/wtforms/wtforms/pull/608
https://github.com/wtforms/wtforms/issues/603
https://github.com/wtforms/wtforms/pull/605
https://github.com/wtforms/wtforms/issues/55
https://github.com/wtforms/wtforms/pull/595
https://github.com/wtforms/wtforms/pull/530
https://github.com/wtforms/wtforms/pull/593
https://github.com/wtforms/wtforms/issues/128
https://github.com/wtforms/wtforms/pull/592

WTForms Documentation (3.1.x), Release 3.1.2

• Fields can be passed the name argument to use a HTML name different than their Python name. #205, #601

• Render attribute names like for_ and class_ are normalized consistently so later values override those specified
earlier. #449, #596

• Flags should now be stored in dicts and can take non-boolean values. A DeprecationWarning is issued when
tuples are used. #406 #467

• Widgets are HTML5 by default. #594 #614

• Fixed a bug when the SelectField choices are list of strings. #598

• Error messages standardization. #613 #620 #626 #627

• SelectMultipleField validate_choice bugfix. #606 #642

• Fixed SelectMultipleField validation when using choices list shortcut. #612 #661

• Removed form._get_translations(). Use Meta.get_translations instead.

3.1.7 Version 2.3.3

Released 2020-07-30

• This release includes the translation files that were missing in the 2.3.2 release. #641

3.1.8 Version 2.3.2

Released 2020-07-29

• Fixed a bug with SelectField choices shortcut at form submission. #598#639

3.1.9 Version 2.3.1

Released 2020-04-22

• All modules in wtforms.ext show a deprecation warning on import. They will be removed in version 3.0.

• Fixed a bug when SelectField choices is None. #572#585

• Restored HTMLString and escape_html as aliases for MarkupSafe functions. Their use shows a
DeprecationWarning. #581, #583

• Form.validate takes an extra_validators parameter, mapping field names to lists of extra validator func-
tions. This matches BaseForm.validate. #584

• Update locale catalogs.

3.1.10 Version 2.3.0

Released 2020-04-21

• Drop support for Python 2.6, 3.3, and 3.4.

• SelectField uses list() to construct a new list of choices. #475

• Permitted underscores in HostnameValidation. #463

• URL validator now allows query parameters in the URL. #523, #524

3.1. Changes 55

https://github.com/wtforms/wtforms/issues/205
https://github.com/wtforms/wtforms/pull/601
https://github.com/wtforms/wtforms/issues/449
https://github.com/wtforms/wtforms/pull/596
https://github.com/wtforms/wtforms/issues/406
https://github.com/wtforms/wtforms/pull/467
https://github.com/wtforms/wtforms/issues/594
https://github.com/wtforms/wtforms/pull/614
https://github.com/wtforms/wtforms/pull/598
https://github.com/wtforms/wtforms/issues/613
https://github.com/wtforms/wtforms/pull/620
https://github.com/wtforms/wtforms/pull/626
https://github.com/wtforms/wtforms/pull/627
https://github.com/wtforms/wtforms/issues/606
https://github.com/wtforms/wtforms/pull/642
https://github.com/wtforms/wtforms/issues/612
https://github.com/wtforms/wtforms/pull/661
https://github.com/wtforms/wtforms/issues/641
https://github.com/wtforms/wtforms/pull/598
https://github.com/wtforms/wtforms/pull/639
https://github.com/wtforms/wtforms/issues/572
https://github.com/wtforms/wtforms/issues/585
https://github.com/wtforms/wtforms/issues/581
https://github.com/wtforms/wtforms/pull/583
https://github.com/wtforms/wtforms/pull/584
https://github.com/wtforms/wtforms/pull/475
https://github.com/wtforms/wtforms/pull/463
https://github.com/wtforms/wtforms/issues/523
https://github.com/wtforms/wtforms/pull/524

WTForms Documentation (3.1.x), Release 3.1.2

• Updated false_values param in BooleanField docs. #483, #485

• Fixed broken format string in Arabic translation #471

• Updated French and Japanese translations. #506#514

• Updated Ukrainian translation. #433

• FieldList error list keeps entries in order for easier identification of which fields had errors. #257, #407

• Length gives a more helpful error message when min and max are the same value. #266

• SelectField no longer coerces None to "None" allowing use of "None" as an option. #289, #288

• The TextArea widget prepends a \r\n newline when rendering to account for browsers stripping an initial line
for display. This does not affect the value. #238, #395

• HTML5 IntegerField and RangeInput don’t render the step="1" attribute by default. #343

• aria_ args are rendered the same way as data_ args, by converting underscores to hyphens.
aria_describedby="name-help" becomes aria-describedby="name-help". #239, #389

• Added a check_validators method to Field which checks if the given validators are both callable, and not
classes. #298#410

• form.errors is not cached and will update if an error is appended to a field after access. #568

• NumberRange correctly handle NaN values. #505, #548

• IntegerField checks input type when processing data. #451

• Added a parameter to SelectField to skip choice validation. #434, #493

• Choices which name and data are the same do not need to use tuples. #526

• Added more documentation on HTML5 fields. #326#409

• HTML is escaped using MarkupSafe instead of the previous internal implementation. escape_html() is re-
moved, replaced by markupsafe.escape(). HTMLString is removed, replaced by markupsafe.Markup.
#400

• Fixed broken IPv6 validator, validation now uses the ipaddress package. #385, #403

• Label text is escaped before rendering. #315, #375

• Email validation is now handled by an optional library, email_validator. #429

3.1.11 Version 2.2.1

Released 2018-06-07

• StringField only sets data = '' when form data is empty and an initial value was not provided. This fixes
an issue where the default value wasn’t rendered with the initial form. #291#401, #355

56 Chapter 3. Information

https://github.com/wtforms/wtforms/issues/483
https://github.com/wtforms/wtforms/pull/485
https://github.com/wtforms/wtforms/pull/471
https://github.com/wtforms/wtforms/pull/506
https://github.com/wtforms/wtforms/pull/514
https://github.com/wtforms/wtforms/pull/433
https://github.com/wtforms/wtforms/issues/257
https://github.com/wtforms/wtforms/pull/407
https://github.com/wtforms/wtforms/pull/266
https://github.com/wtforms/wtforms/issues/289
https://github.com/wtforms/wtforms/pull/288
https://github.com/wtforms/wtforms/issues/238
https://github.com/wtforms/wtforms/pull/395
https://github.com/wtforms/wtforms/pull/343
https://github.com/wtforms/wtforms/issues/239
https://github.com/wtforms/wtforms/pull/389
https://github.com/wtforms/wtforms/pull/298
https://github.com/wtforms/wtforms/pull/410
https://github.com/wtforms/wtforms/pull/568
https://github.com/wtforms/wtforms/issues/505
https://github.com/wtforms/wtforms/pull/548
https://github.com/wtforms/wtforms/pull/451
https://github.com/wtforms/wtforms/issues/434
https://github.com/wtforms/wtforms/pull/493
https://github.com/wtforms/wtforms/pull/526
https://github.com/wtforms/wtforms/pull/326
https://github.com/wtforms/wtforms/pull/409
https://github.com/wtforms/wtforms/pull/400
https://github.com/wtforms/wtforms/issues/385
https://github.com/wtforms/wtforms/pull/403
https://github.com/wtforms/wtforms/issues/315
https://github.com/wtforms/wtforms/pull/375
https://github.com/wtforms/wtforms/pull/429
https://github.com/wtforms/wtforms/issues/291
https://github.com/wtforms/wtforms/issues/401
https://github.com/wtforms/wtforms/pull/355

WTForms Documentation (3.1.x), Release 3.1.2

3.1.12 Version 2.2

Released 2018-06-02

• Merged new and updated translations from the community.

• Passing data_ args to render a field converts all the underscores to hyphens when rendering the HTML attribute,
not just the first one. data_foo_bar becomes data-foo-bar. #248

• The UUID validator uses the uuid.UUID class instead of a regex. #251

• SelectField copies the list of choices passed to it so modifying an instance’s choices will not modify the
global form definition. #286

• Fields call process_formdata() even if the raw data is empty. #280

• Added a MultipleFileField to handle a multi-file input. FileField continues to handle only one value. The
underlying FileInput widget gained a multiple argument. #281

• SelectField choices can contain HTML (MarkupSafe Markup object or equivalent API) and will be rendered
properly. #302

• fields.TimeField and html5.TimeField were added. #254

• Improved Email. Note that it is still unreasonable to validate all emails with a regex and you should prefer
validating by actually sending an email. #294

• Widgets render the required attribute when using a validator that provides the 'required' flag, such as
DataRequired . #361

• Fix a compatibility issue with SQLAlchemy 1.2 that caused QuerySelectField to fail with ValueError:
too many values to unpack. #391

3.1.13 Version 2.1

Released 2015-12-15

• Added render_kw to allow default rendering time options.

• Updated / added a number of localizations.

• Updated docs.

• Allow widgets to set flags.

3.1.14 Version 2.0.2

Released 2015-01-18

• Added more localizations and updated some.

• Validators for email and URL can validate IDNA-encoded domain names and new TLDs.

• Better DeprecationWarnings.

• Support localization files in /usr/share/locale for distro packaging.

3.1. Changes 57

https://github.com/wtforms/wtforms/pull/248
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://github.com/wtforms/wtforms/pull/251
https://github.com/wtforms/wtforms/pull/286
https://github.com/wtforms/wtforms/pull/280
https://github.com/wtforms/wtforms/pull/281
https://github.com/wtforms/wtforms/pull/302
https://github.com/wtforms/wtforms/pull/254
https://github.com/wtforms/wtforms/pull/294
https://github.com/wtforms/wtforms/pull/361
https://github.com/wtforms/wtforms/pull/391

WTForms Documentation (3.1.x), Release 3.1.2

3.1.15 Version 2.0.1

Released 2014-07-01

• Update wheel install to conditionally install ordereddict for Python 2.6.

• Doc improvements.

3.1.16 Version 2.0

Released 2014-05-20

• Add new class Meta paradigm for much more powerful customization of WTForms.

• Move i18n into core. Deprecate wtforms.ext.i18n.

• Move CSRF into core. Deprecate wtforms.ext.csrf.

• Fix issue rendering SelectFields with value=True.

• Make DecimalField able to use babel locale-based number formatting.

• Drop Python 3.2 support (Python3 support for 3.3+ only).

• Passing attr=False to WTForms widgets causes the value to be ignored.

• Unique validator in wtforms.ext.sqlalchemy has been removed.

• Deprecate form._get_translations. Use Meta.get_translations instead.

3.1.17 Version 1.0.5

Released 2013-09-10

• Fix a bug in validators which causes translations to happen once then clobber any future translations.

• ext.sqlalchemy and ext.appengine minor cleanups / deprecation.

• Allow blank string and the string false to be considered false values for BooleanField (configurable). This
is technically a breaking change, but it is not likely to affect the majority of users adversely.

• ext.i18n form allows passing LANGUAGES to the constructor.

3.1.18 Version 1.0.4

Released 2013-04-28

• Add widgets and field implementations for HTML5 specialty input types.

• ext.appengine add NDB support.

• Add translations for Korean, Traditional Chinese.

58 Chapter 3. Information

WTForms Documentation (3.1.x), Release 3.1.2

3.1.19 Version 1.0.3

Released 2013-01-24

• Tests complete in python 3.2/3.3.

• Localization for ru, fr.

• Minor fixes in documentation for clarity.

• FieldList now can take validators on the entire FieldList.

• Fix issue with ext.sqlalchemy QuerySelectField.

• Fix issue in ext.sqlalchemy ColumnDefault conversion.

• ext.sqlalchemy supports Enum type.

• Field class now allows traversal in Django 1.4 templates.

3.1.20 Version 1.0.2

Released 2012-08-24

• We now support Python 2.x and 3.x on the same codebase, thanks to a lot of hard work by Vinay Sajip.

• Add in ability to convert relationships to ext.sqlalchemy model_form.

• Built-in localizations for more languages.

• Distinguish Required validator into InputRequired and DataRequired.

• Better IP address validation, including IPv6 support.

• AnyOf / NoneOf now work properly formatting other datatypes than strings.

• Optional validator can optionally pass through whitespace.

3.1.21 Version 1.0.1

Released 2012-02-29

• Fixed issues related to building for Python 3 and Python pre-releases.

• Add object_data to fields to get at the originally passed data.

3.1.22 Version 1.0

Released 2012-02-28

• Output HTML5 compact syntax by default.

• Substantial code reorg, cleanup, and test improvements.

• Added ext.csrf for a way to implement CSRF protection.

• ext.sqlalchemy supports PGInet, MACADDR, and UUID field conversion.

• ext.sqlalchemy supports callable defaults.

• ext.appengine model_form now supports generating forms with the same ordering as model.

• ext.appengine ReferencePropertyField now gets get_label like the other ORM fields.

3.1. Changes 59

WTForms Documentation (3.1.x), Release 3.1.2

• Add localization support for WTForms built-in messages.

• Python 3 support (via 2to3).

• An empty label string can be specified on fields if desired.

• Option widget can now take kwargs customization.

• Field subclasses can provide default validators as a class property.

• DateTimeField can take time in microseconds.

• Numeric fields all set .data to None on coercion error for consistency.

3.1.23 Version 0.6.3

Released 2011-04-24

• Documentation: Substantial documentation improvements, including adding Crash Course as a Sphinx docu-
ment.

• ext.django QuerySetSelectField and ModelSelectField now accept get_label similar to sqlalchemy
equivalents.

• ext.appengine model_form fixes for FloatField, TimeField, and DateTimeField.

• ext.appengine ReferencePropertyField now properly stores model object, not key.

3.1.24 Version 0.6.2

Released 2011-01-22

• ext.appengine various field fixes.

• ext.appengine model_form changes.

• Fix issue in Optional with non-string input.

• Make numeric fields more consistent.

• Improve test coverage substantially.

3.1.25 Version 0.6.1

Released 2010-09-17

• ext.appengine ReferencePropertyField.

• Dateutil fields render issue, and consistency issue.

• Optional validator failed when raw_data was absent

• Documentation: docs now mention HTML escaping functionality.

• Add preliminary support for providing a translations object that can translate built-in validation and coercion
errors.

60 Chapter 3. Information

WTForms Documentation (3.1.x), Release 3.1.2

3.1.26 Version 0.6

Released 2010-04-25

• HTML is now marked as safe (using __html__) so that compatible templating engines will not auto-escape it.

• Field._default is now Field.default.

• All fields now have a raw_data property.

• Fields which are select fields (including those in .ext) can be iterated to produce options, and have an
option_widget kwarg.

• Minor bugfixes and cleanup in FieldList, Select(Multiple)Field, QuerySelectField to address behav-
ioral consistency.

• Added FloatField, based on IntegerField.

• ext.appengine now supports FloatProperty and GeoPtProperty.

• ext.sqlalchemy QueryMultipleSelectField changed to QuerySelectMultipleField.

3.1.27 Version 0.5

Released 2010-02-13

• Added a BaseForm class which provides the core processing and validation functionality of Form without re-
quiring declarative subclassing.

• Field labels now default to a humanized field name.

• Fields now have a short_name property which is the un-prefixed name.

• DecimalField now rounds values for display without float coercion. See docs for details on how to format
decimals.

• ext.sqlalchemy.fields now has an additional QuerySelectMultipleField, and all fields can now support
multiple-column primary keys.

• ext.sqlalchemy.orm contains tools for making forms from ORM models.

• Added ext.dateutil for flexible date-time parsing.

• Added ext.appengine contributed by Rodrigo Moraes.

• Added AnyOf and NoneOf validators.

3.1.28 Version 0.4

Released 2009-10-10

• Fields have much greater control over input processing. Filters have been added to implement a simple way to
transform input data.

• Added fields that encapsulate advanced data structures such as dynamic lists or child forms for more powerful
field composing.

• Fields now use widgets for rendering.

• All built-in validators have been converted to classes to clean up the code.

• Form.auto_populate and Field.populate were renamed to populate_obj to clarify that they populate
another object, not the Form or Field. This is an API breaking change.

3.1. Changes 61

WTForms Documentation (3.1.x), Release 3.1.2

• Dropped support for Python 2.3.

3.1.29 Version 0.3.1

Released 2009-01-24

• Several fixes were made to the code and tests to make WTForms compatible with Python 2.3/2.4.

• Form’s properties can now be accessed via dictionary-style access such as form['author']. This also has the
intended effect of making variable lookups in Django templates more reliable.

• Form and Field construction changes: Form now uses a metaclass to handle creating its _unbound_fields
property, and Field construction now gives an instance of the new UnboundField class instead of using a partial
function application. These are both internal changes and do not change the API.

3.1.30 Version 0.3

Released 2009-01-18

• Fields are now responsible for their own validation, instead of mostly relying on Form. There are also new
pre_validate and post_validate hooks on subfields, adding a great deal of flexibility when dealing with
field-level validation. Note that this is an API breaking change if you have any subfields that override Field.
validate. These will need to be updated to use the new hooks.

• process_data no longer accepts the has_formdata parameter.

• At form instantiation time, process_data will be called only once for each field. If a model object is provided
which contains the property, then this value is used. Otherwise, a keyword argument if specified is used. Failing
that, the field’s default value is used.

• If any form data is sent, process_formdata will be called after process_data for each field. If no form data
is available for the given field, it is called with an empty list.

• wtforms.ext.django has been overhauled, both to mirror features and changes of the Django 1.0 release, and
to add some useful fields for working with Django ORM data in forms.

• The checker keyword argument to SelectField, SelectMultipleField, and RadioField has been re-
named to coerce to reflect the actual functionality of this callable.

3.1.31 Version 0.2

Released 2009-01-13

• We have documentation and unit tests!

• Fields now have a flags property which contain boolean flags that are set either by the field itself or validators
being specified on a field. The flags can then be used in checks in template or Python code.

• Changed the way fields take parameters, they are no longer quasi magic. This is a breaking change. Please see
the documentation for the new syntax.

• Added optional description argument to Field, accessible on the field as description. This provides an easy
way to define e.g. help text in the same place as the form.

• Added new semantics for validators which can stop the validation chain, with or without errors.

• Added a regexp validator, and removed the not_empty validator in favour of two validators, optional and re-
quired. The new validators allow control over the validation chain in addition to checking emptiness.

62 Chapter 3. Information

WTForms Documentation (3.1.x), Release 3.1.2

• Renamed wtforms.contrib to wtforms.ext and reorganised wtforms.ext.django. This is a breaking
change if you were using the Django extensions, but should only require changing your imports around a lit-
tle.

• Better support for other frameworks such as Pylons.

3.1.32 Version 0.1

Released 2008-07-25

• Initial release.

3.2 What’s New in WTForms 3

3.2.1 New Features

WTForms 3 is something something TODO

3.2.2 Past Major Releases

WTForms 2

WTForms 2 was the first major version bump since WTForms 1.0. Coming with it are a number of major changes that
allow far more customization of core WTForms features. This is done to make WTForms even more capable when
working along with companion libraries.

New Features

• Class Meta paradigm allows customization of many aspects of WTForms.

• CSRF and i18n are core features not needing extensions anymore.

• Widget rendering changes:

– Passing <attribute name>=False to WTForms widget rendering is now ignored, making it easier to
deal with boolean HTML attributes.

– Creating an html attribute data-foo can be done by passing the keyword data_foo to the widget.

Deprecated API’s

These API’s still work, but in most cases will cause a DeprecationWarning. The deprecated API’s will be removed in
WTForms 3.0, so write code against the new API’s unless it needs to work across both WTForms 1.x and 2.x

• Core

– Form._get_translations Use Meta.get_translations instead.

– The TextField alias for StringField is deprecated.

– wtforms.validators.Required is now wtforms.validators.DataRequired

– wtforms.fields._unset_value is now wtforms.utils.unset_value

3.2. What’s New in WTForms 3 63

WTForms Documentation (3.1.x), Release 3.1.2

• WTForms Extensions All the extensions are being deprecated. We feel like the extensions we had would actually
benefit from being pulled outside the WTForms package, because it would allow them to have a separate release
schedule that suits their companion libraries.

– wtforms.ext.appengine Is deprecated, see WTForms-Appengine

– wtforms.ext.csrf CSRF protection is now built in

– wtforms.ext.dateutil Is deprecated, but does not have a new home yet.

– wtforms.ext.django Is deprecated. See WTForms-Django

– wtforms.ext.i18n i18n is now built in

– wtforms.ext.sqlalchemy Is deprecated, look at WTForms-Alchemy (docs)

Low-level Changes

Most of these changes shouldn’t affect the typical library user, however we are including these changes for completeness
for those who are creating companion libraries to WTForms.

• BaseForm._fields is now an OrderedDict, not a plain dict.

• FormMeta now manages an attribute called _wtforms_meta which is a subclass of any class Meta defined on
ancestor form classes.

• A new keyword-param called simply data= to the Form constructor has been added and positioned as the place
where soon we will be able to accept structured data which is neither formdata, object data, or defaults. Currently
this parameter is merged with the kwargs, but the intention is to handle other structured data (think JSON).

• Filters on fields stop on the first ValueError, instead of continuing on to the next one.

3.3 BSD-3-Clause License

Copyright 2008 WTForms

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

64 Chapter 3. Information

https://github.com/wtforms/wtforms-appengine
https://github.com/wtforms/wtforms-django
https://pypi.org/project/WTForms-Alchemy/
https://wtforms-alchemy.readthedocs.io/

WTForms Documentation (3.1.x), Release 3.1.2

3.4 Contributing to WTForms

WTForms is an open-source library and changing and evolving over time. To that end, we are supported by the contri-
butions of many people in the python community.

3.4.1 How to Contribute

WTForms is now on GitHub, so all contributions should be either associated with a pull request or with a ticket &
patch.

3.4.2 Contribution Guidelines

Code submitted should:

• Be formatted according to the PEP8 style guideline except that it does not need to confirm to the 79-column limit
requirement of the guideline.

• Have tests

– Unless it’s a bugfix, it should pass existing tests.

– New classes or methods should mean new unit tests or extending existing tests.

– Bugfixes can probably do with a regression test too (a test that would fail without this fix)

• Use naming schemes consistent with WTForms conventions

• Work on all versions of Python that WTForms currently supports. Take advantage of Github Actions for running
tests on all supported Python versions.

3.4.3 Note on API compatibility

WTForms is a very small library, but yet it’s possible to break API compatibility pretty easily. We are okay with
breaking API compatibility for compelling features or major changes that we feel are worthwhile inclusions to the
WTForms core, but realize that any API compatibility break will delay the inclusion of your ticket to the next major
release.

Some examples of API compatibility breaks include:

• Adding new attributes or methods to the base Form class

• Modifying the number of required arguments of core methods like process()

• Changing the default behavior of a field.

However, it is still possible to add new features to WTForms without breaking API compatibility. For example, if one
were looking to add Babel locale support to DecimalField, it could be done so long as by default, DecimalField behaved
the same as it did before. This could look something like:

1. Add a keyword arg use_locale to the constructor

2. Make the keyword default to False so the behavior without this arg is identical to the previous behavior.

3. Add your functionality and make sure all existing DecimalField tests work unchanged (and of course add new
tests for the new functionality).

3.4. Contributing to WTForms 65

https://github.com/wtforms/wtforms
https://www.python.org/dev/peps/pep-0008/
https://github.com/wtforms/wtforms/actions

WTForms Documentation (3.1.x), Release 3.1.2

66 Chapter 3. Information

PYTHON MODULE INDEX

w
wtforms.csrf, 44
wtforms.csrf.core, 45
wtforms.csrf.session, 48
wtforms.fields, 21
wtforms.form, 15
wtforms.meta, 42
wtforms.validators, 33

67

WTForms Documentation (3.1.x), Release 3.1.2

68 Python Module Index

INDEX

Symbols
__call__() (wtforms.fields.Field method), 23
__contains__() (wtforms.form.BaseForm method), 20
__contains__() (wtforms.form.Form method), 17
__delitem__() (wtforms.form.BaseForm method), 20
__getitem__() (wtforms.fields.FieldList method), 30
__getitem__() (wtforms.form.BaseForm method), 20
__html__() (wtforms.fields.Field method), 23
__init__() (wtforms.csrf.core.CSRFTokenField

method), 45
__init__() (wtforms.fields.Field method), 21
__init__() (wtforms.form.BaseForm method), 19
__init__() (wtforms.form.Form method), 15
__iter__() (wtforms.fields.FieldList method), 30
__iter__() (wtforms.form.BaseForm method), 20
__iter__() (wtforms.form.Form method), 16
__len__() (wtforms.fields.FieldList method), 30
__setitem__() (wtforms.form.BaseForm method), 20
_value() (wtforms.csrf.core.CSRFTokenField method),

46

A
AnyOf (class in wtforms.validators), 35
append_entry() (wtforms.fields.FieldList method), 30

B
BaseForm (class in wtforms.form), 19
bind_field() (wtforms.meta.DefaultMeta method), 43
BooleanField (class in wtforms.fields), 25
build_csrf() (wtforms.meta.DefaultMeta method), 43

C
cache_translations (wtforms.meta.DefaultMeta at-

tribute), 43
CheckboxInput (class in wtforms.widgets), 39
ColorField (class in wtforms.fields), 29
ColorInput (class in wtforms.widgets), 39
CSRF (class in wtforms.csrf.core), 46
csrf (wtforms.meta.DefaultMeta attribute), 42
csrf_class (wtforms.meta.DefaultMeta attribute), 42
csrf_field_name (wtforms.meta.DefaultMeta at-

tribute), 42

CSRFTokenField (class in wtforms.csrf.core), 45
current_token (wtforms.csrf.core.CSRFTokenField at-

tribute), 46

D
data (wtforms.fields.Field attribute), 23
data (wtforms.form.BaseForm attribute), 19
data (wtforms.form.Form attribute), 16
DataRequired (class in wtforms.validators), 33
DateField (class in wtforms.fields), 25
DateInput (class in wtforms.widgets), 39
DateTimeField (class in wtforms.fields), 25
DateTimeInput (class in wtforms.widgets), 39
DateTimeLocalField (class in wtforms.fields), 25
DateTimeLocalInput (class in wtforms.widgets), 39
DecimalField (class in wtforms.fields), 25
DecimalRangeField (class in wtforms.fields), 26
default (wtforms.fields.Field attribute), 24
DefaultMeta (class in wtforms.meta), 42
description (wtforms.fields.Field attribute), 24
Disabled (class in wtforms.validators), 36

E
Email (class in wtforms.validators), 33
EmailField (class in wtforms.fields), 26
EmailInput (class in wtforms.widgets), 39
entries (wtforms.fields.FieldList attribute), 30
EqualTo (class in wtforms.validators), 34
errors (wtforms.fields.Field attribute), 22
errors (wtforms.form.BaseForm attribute), 20
errors (wtforms.form.Form attribute), 16

F
Field (class in wtforms.fields), 21
field_class (wtforms.csrf.core.CSRF attribute), 46
field_id (wtforms.fields.Label attribute), 32
FieldList (class in wtforms.fields), 30
FileField (class in wtforms.fields), 26
FileInput (class in wtforms.widgets), 39
filters (wtforms.fields.Field attribute), 25
Flags (class in wtforms.fields), 32
flags (wtforms.fields.Field attribute), 25

69

WTForms Documentation (3.1.x), Release 3.1.2

FloatField (class in wtforms.fields), 26
Form (class in wtforms.form), 15
form_errors (wtforms.form.Form attribute), 16
FormField (class in wtforms.fields), 29

G
generate_csrf_token() (wtforms.csrf.core.CSRF

method), 46
get_translations() (wtforms.meta.DefaultMeta

method), 43
gettext() (wtforms.fields.Field method), 24

H
HiddenField (class in wtforms.fields), 29
HiddenInput (class in wtforms.widgets), 39
html_params() (in module wtforms.widgets), 40

I
id (wtforms.fields.Field attribute), 24
Input (class in wtforms.widgets), 39
InputRequired (class in wtforms.validators), 34
IntegerField (class in wtforms.fields), 26
IntegerRangeField (class in wtforms.fields), 26
IPAddress (class in wtforms.validators), 34

L
Label (class in wtforms.fields), 32
label (wtforms.fields.Field attribute), 24
Length (class in wtforms.validators), 34
ListWidget (class in wtforms.widgets), 39
locales (wtforms.meta.DefaultMeta attribute), 42

M
MacAddress (class in wtforms.validators), 34
meta (wtforms.fields.Field attribute), 25
meta (wtforms.form.Form attribute), 16
module

wtforms.csrf, 44
wtforms.csrf.core, 45
wtforms.csrf.session, 48
wtforms.fields, 21
wtforms.form, 15
wtforms.meta, 42
wtforms.validators, 33

MonthField (class in wtforms.fields), 26
MonthInput (class in wtforms.widgets), 39
MultipleFileField (class in wtforms.fields), 26

N
name (wtforms.fields.Field attribute), 24
ngettext() (wtforms.fields.Field method), 24
NoneOf (class in wtforms.validators), 36
NumberInput (class in wtforms.widgets), 39

NumberRange (class in wtforms.validators), 35

O
object_data (wtforms.fields.Field attribute), 23
Optional (class in wtforms.validators), 35

P
PasswordField (class in wtforms.fields), 29
PasswordInput (class in wtforms.widgets), 39
pop_entry() (wtforms.fields.FieldList method), 30
populate_obj() (wtforms.csrf.core.CSRFTokenField

method), 46
populate_obj() (wtforms.form.Form method), 16
post_validate() (wtforms.fields.Field method), 22
pre_validate() (wtforms.csrf.core.CSRFTokenField

method), 46
pre_validate() (wtforms.fields.Field method), 22
process() (wtforms.csrf.core.CSRFTokenField

method), 46
process() (wtforms.fields.Field method), 22
process() (wtforms.form.BaseForm method), 20
process_data() (wtforms.fields.Field method), 23
process_errors (wtforms.fields.Field attribute), 24
process_formdata() (wtforms.fields.Field method), 23

R
RadioField (class in wtforms.fields), 26
RadioInput (class in wtforms.widgets), 39
RangeInput (class in wtforms.widgets), 39
raw_data (wtforms.fields.Field attribute), 23
ReadOnly (class in wtforms.validators), 36
Regexp (class in wtforms.validators), 35
render_field() (wtforms.meta.DefaultMeta method),

43

S
SearchField (class in wtforms.fields), 28
SearchInput (class in wtforms.widgets), 40
Select (class in wtforms.widgets), 40
SelectField (class in wtforms.fields), 27
SelectMultipleField (class in wtforms.fields), 28
SessionCSRF (class in wtforms.csrf.session), 48
setup_form() (wtforms.csrf.core.CSRF method), 46
short_name (wtforms.fields.Field attribute), 24
StopValidation (class in wtforms.validators), 33
StringField (class in wtforms.fields), 28
SubmitField (class in wtforms.fields), 28
SubmitInput (class in wtforms.widgets), 40

T
TableWidget (class in wtforms.widgets), 40
TelField (class in wtforms.fields), 28
TelInput (class in wtforms.widgets), 40

70 Index

WTForms Documentation (3.1.x), Release 3.1.2

text (wtforms.fields.Label attribute), 32
TextArea (class in wtforms.widgets), 40
TextAreaField (class in wtforms.fields), 29
TextInput (class in wtforms.widgets), 40
TimeField (class in wtforms.fields), 28
TimeInput (class in wtforms.widgets), 40
type (wtforms.fields.Field attribute), 24

U
URL (class in wtforms.validators), 35
URLField (class in wtforms.fields), 28
URLInput (class in wtforms.widgets), 40
UUID (class in wtforms.validators), 35

V
validate() (wtforms.fields.Field method), 22
validate() (wtforms.form.BaseForm method), 20
validate() (wtforms.form.Form method), 16
validate_csrf_token() (wtforms.csrf.core.CSRF

method), 46
ValidationError (class in wtforms.validators), 33

W
WeekInput (class in wtforms.widgets), 40
widget (wtforms.fields.Field attribute), 24
wrap_formdata() (wtforms.meta.DefaultMeta method),

43
wtforms.csrf

module, 44
wtforms.csrf.core

module, 45
wtforms.csrf.session

module, 48
wtforms.fields

module, 21
wtforms.form

module, 15
wtforms.meta

module, 42
wtforms.validators

module, 33

Index 71

	Help
	FAQ
	Does WTForms work with [library here]?
	Does WTForms support unicode?
	What versions of Python are supported?
	How can I contribute to WTForms?
	How do I mark in a template when a field is required?
	Does WTForms handle file uploads?
	Why does blank input not go back to the default value?
	How do I… [convoluted combination of libraries]

	Solving Specific Problems
	Prelude: Poke it with a Stick!
	Removing Fields Per-instance
	Dynamic Form Composition
	Rendering Errors
	Specialty Field Tricks

	Crash Course
	Download / Installation
	Key Concepts
	Getting Started
	Using Forms
	Editing existing objects
	Exploring in the console

	How Forms get data
	Validators
	Rendering Fields
	Displaying Errors
	Custom Validators

	Next Steps

	API
	Forms
	The Form class
	Defining Forms
	Form Inheritance
	In-line Validators and Filters

	Using Forms
	Low-Level API

	Fields
	Field definitions
	The Field base class
	Basic fields
	Convenience Fields
	Field Enclosures
	Custom Fields
	Fields With Custom Constructors
	Considerations for overriding process()

	Additional Helper Classes

	Validators
	Built-in validators
	Custom validators
	Setting flags on the field with validators

	Widgets
	Built-in widgets
	Widget-Building Utilities
	Custom widgets

	class Meta
	CSRF Protection
	Using CSRF
	How WTForms CSRF works
	Creating your own CSRF implementation
	Session-based CSRF implementation
	Example
	Example Integration

	Internationalization (i18n)
	Translating user-provided messages
	Translating built-in messages
	Using the built-in translations provider
	Writing your own translations provider

	Information
	Changes
	Version 3.1.2
	Version 3.1.1
	Version 3.1.0
	Version 3.0.1
	Version 3.0.0
	Version 3.0.0a1
	Version 2.3.3
	Version 2.3.2
	Version 2.3.1
	Version 2.3.0
	Version 2.2.1
	Version 2.2
	Version 2.1
	Version 2.0.2
	Version 2.0.1
	Version 2.0
	Version 1.0.5
	Version 1.0.4
	Version 1.0.3
	Version 1.0.2
	Version 1.0.1
	Version 1.0
	Version 0.6.3
	Version 0.6.2
	Version 0.6.1
	Version 0.6
	Version 0.5
	Version 0.4
	Version 0.3.1
	Version 0.3
	Version 0.2
	Version 0.1

	What’s New in WTForms 3
	New Features
	Past Major Releases
	WTForms 2
	New Features
	Deprecated API’s
	Low-level Changes

	BSD-3-Clause License
	Contributing to WTForms
	How to Contribute
	Contribution Guidelines
	Note on API compatibility

	Python Module Index
	Index

